skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Slab dynamics linked to transient weakening during mineral phase transitions
New experiments shed light on the complex interplay between rock deformation and metamorphism. Slab stagnation in Earth’s mantle transition zone may be explained by transient weakening during the olivine–spinel phase transition.  more » « less
Award ID(s):
2023128
PAR ID:
10634330
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Geoscience
Volume:
18
Issue:
6
ISSN:
1752-0894
Page Range / eLocation ID:
457 to 458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When a transition fault test set leaves undetected transition faults because of logic redundancies, test constraints, or the existence of hard-to-detect faults, it leaves transition fault sites uncovered. For the case where multicycle tests are used, this paper explores the possibility of covering the sites of undetected transition faults by using tests for what are referred to as optimistic unspecified transition faults. For this discussion, a standard transition fault is associated with an extra delay of a single clock cycle. An unspecified transition fault captures in a single fault the behaviors of transition faults of different durations. Because faults with different durations may be detectable or undetectable independently by a multicycle test, an unspecified transition fault may be detected even if the standard transition fault at the same site is undetectable. This effect is enhanced with optimistic unspecified transition faults. The paper describes an iterative test compaction procedure for multicycle tests that supplements the set of standard transition faults with optimistic unspecified transition faults to cover the sites of undetected standard transition faults. 
    more » « less
  2. Abstract We consider a free fermion formulation of a statistical model exhibiting a limit shape phenomenon. The model is shown to have a phase transition that can be visualized as the merger of two liquid regions – arctic circles. We show that the merging arctic circles provide a space-time resolved picture of the phase transition in lattice QCD known as Gross–Witten–Wadia transition. The latter is a continuous phase transition of the third order. We argue that this transition is universal and is not spoiled by interactions if parity and time-reversal symmetries are preserved. We refer to this universal transition as the merger transition. 
    more » « less
  3. Intercalation of alkali metals is widely studied to introduce a structural phase transition from 2H to 1T′ in 2D group VI transition metal dichalcogenides (TMDCs). This highly efficient phase transition method has enabled an access to a library of phases with novel physical and chemical properties attractive for functional devices and electrochemical catalysis. However, despite numerous studies that have predicted that charge doping mainly contributes to the structural phase transition in the intercalation process, a mechanistic understanding of the phase transition at the atomic level has not been fully revealed. Furthermore, the coupled effects of strain and other intrinsic or extrinsic factors on the intercalation‐induced phase transition have not been quantitatively determined. Herein, the progress of the intercalation‐induced phase transition is briefly overviewed and the knowledge gaps in the current understanding of phase transition and intercalation in 2D TMDCs are highlighted. To fully gain the microscopic picture of the intercalation‐induced phase transition, in situ multimodal probes to monitor the real‐time structure−property relationship during intercalation are suggested. The proposed research directions further direct material scientists to efficiently engineer phase transition pathways in 2D materials to explore novel functional phases. 
    more » « less
  4. We investigate the rigidity transition associated with shear jamming in frictionless, as well as frictional, disk packings in the quasi-static regime and at low shear rates. For frictionless disks, the transition under quasi-static shear is discontinuous, with an instantaneous emergence of a system spanning rigid clusters at the jamming transition. For frictional systems, the transition appears continuous for finite shear rates, but becomes sharper for lower shear rates. In the quasi-static limit, it is discontinuous as in the frictionless case. Thus, our results show that the rigidity transition associated with shear jamming is discontinuous, as demonstrated in the past for isotropic jamming of frictionless particles, and therefore a unifying feature of the jamming transition in general. 
    more » « less
  5. The transition from laminar to turbulent flow is of great interest since it is one of the most difficult and unsolved problems in fluids engineering. The transition processes are significantly important because the transition has a huge impact on almost all systems that come in contact with a fluid flow by altering the mixing, transport, and drag properties of fluids even in simple pipe and channel flows. Generally, in most transportation systems, the transition to turbulence causes a significant increase in drag force, energy consumption, and, therefore, operating cost. Thus, understanding the underlying mechanisms of the laminar-to-turbulent transition can be a major benefit in many ways, especially economically. There have been substantial previous studies that focused on testing the stability of laminar flow and finding the critical amplitudes of disturbances necessary to trigger the transition in various wall-bounded systems, including circular pipes and square ducts. However, there is still no fundamental theory of transition to predict the onset of turbulence. In this study, we perform direct numerical simulations (DNS) of the transition flows from laminar to turbulence in a channel flow. Specifically, the effects of different magnitudes of perturbations on the onset of turbulence are investigated. The perturbation magnitudes vary from 0.001 (0.1%) to 0.05 (5%) of a typical turbulent velocity field, and the Reynolds number is from 5,000 to 40,000. Most importantly, the transition behavior in this study was found to be in good agreement with other reported studies performed for fluid flow in pipes and ducts. With the DNS results, a finite amplitude stability curve was obtained. The critical magnitude of perturbation required to cause transition was observed to be inversely proportional to the Reynolds number for the magnitude from 0.01 to 0.05. We also investigated the temporal behavior of the transition process, and it was found that the transition time or the time required to begin the transition process is inversely correlated with the Reynolds number only for the magnitude from 0.02 to 0.05, while different temporal behavior occurs for smaller perturbation magnitudes. In addition to the transition time, the transition dynamics were investigated by observing the time series of wall shear stress. At the onset of transition, the shear stress experiences an overshoot, then decreases toward sustained turbulence. As expected, the average values of the wall shear stress in turbulent flow increase with the Reynolds number. The change in the wall shear stress from laminar to overshoot was, of course, found to increase with the Reynolds number. More interestingly was the observed change in wall shear stress from the overshoot to turbulence. The change in magnitude appears to be almost insensitive to the Reynolds number and the perturbation magnitude. Because the change in wall shear stress is directly proportional to the pumping power, these observations could be extremely useful when determining the required pumping power in certain flow conditions. Furthermore, the stability curve and wall shear stress changes can be considered robust features for future applications, and ultimately interpreted as evidence of progress toward solving the unresolved fluids engineering problem. 
    more » « less