skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Histological Staining and Hydrogen Peroxide Visualization of the Abscission Zone in Setaria viridis
The abscission zone (AZ) consists of specialized cell layers where cell separation or breakage occurs that result in organ detachment. Microscopic observation of the AZ is crucial for understanding its function. The AZ undergoes cellular and physiological changes prior to abscission, such as cell death, loss of chlorophyll, and the production of reactive oxygen species (ROS). These changes can be visualized using specific dyes and indicators under light or fluorescent microscopes. However, one challenge of using these dyes is their inefficient penetration into the tissue, especially when the epidermal layer has thick secondary cell walls. In this chapter, a detailed protocol to overcome this challenge is described. Using the fruit AZ of Setaria viridis, in which the epidermal cell wall is thick and lignified, we gently fix the dissected tissue, embed it in the Cryomatrix, and trim off the outer cell layers using a cryostat. The tissue with exposed inner cells can then be stained with fluorescent dyes to visualize organelles of interest, or 3,3′-diaminobenzidine (DAB) to visualize hydrogen peroxide accumulated in the tissue.  more » « less
Award ID(s):
1938086
PAR ID:
10634524
Author(s) / Creator(s):
Editor(s):
Tranbarger, Timothy J
Publisher / Repository:
Springer US
Date Published:
ISSN:
1940-6029
Page Range / eLocation ID:
61 to 71
Subject(s) / Keyword(s):
Abscission Zone (AZ), Chlorophyll quantification, DAPI staining, Calcofluor white, 3,3′-Diaminobenzidine (DAB), Reactive oxygen species (ROS), Hydrogen peroxide, Cryosection, Setaria Viridis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor,SHATTERING1(SH1), is a domestication gene regulating abscission in multiple cereals, including rice andSetaria. In rice,SH1inhibits lignification specifically in the AZ. However, the AZ ofSetariais nonlignified throughout, raising the question of howSH1functions in species without lignification.Crispr‐Cas9 knockout mutants ofSH1were generated inSetaria viridisand characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA‐Seq analysis.Thesh1mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed betweensh1and the wild‐type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin‐related genes differed between WT andsh1, with the signal of an antibody to auxin detected in thesh1chloroplast.SH1inSetariais required for activation of abscission through auxin signaling, which is not reported in other grass species. 
    more » « less
  2. Abstract Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef. 
    more » « less
  3. SUMMARY The repeated evolution of high seed shattering during multiple independent de‐domestications of cultivated Asian rice (Oryza sativa) into weedy rice (Oryzaspp.) is a prime example of convergent evolution. Weedy rice populations converge in histological features of the abscission zone (AZ), a crucial structure for seed abscission, while ancestral cultivated rice populations exhibit varied AZ morphology and levels of shattering. However, the genetic bases of these phenotypic patterns remain unclear. We examined the expression profiles of the AZ region and its surrounding tissues at three developmental stages in two low‐shattering cultivars ofausandtemperate japonicadomesticated groups and in two genotypes of their derived high‐shattering weed groups, Blackhull Awned (BHA) and Spanish Weedy Rice (SWR), respectively. Consistent with the greater alteration of AZ morphology during the de‐domestication of SWR than BHA, fewer genes exhibited a comparable AZ‐region exclusive expression pattern between weed and crop in thetemperate japonicalineage than in theauslineage. Transcription factors related to the repression of lignin and secondary cell wall deposition, such as,OsWRKY102andOsXND‐1‐like, along with certain known shattering genes involved in AZ formation, likely played a role in maintaining AZ region identity in both lineages. Meanwhile, most genes exhibiting AZ‐region exclusive expression patterns do not overlap between the two lineages and the genes exhibiting differential expression in the AZ region between weed and crop across the two lineages are enriched for different gene ontology terms. Our findings suggest genetic flexibility in shaping AZ morphology, while genetic constraints on AZ identity determination in these two lineages. 
    more » « less
  4. In plant cells, vacuoles are extremely important for growth and development, and influence important cellular functions as photosynthesis, respiration, and transpiration. Plant cells contain lytic and storage vacuoles, whose size can be different depending on cell type and tissue developmental stage. One of the main roles of vacuoles is to regulate the cell turgor in response to different stimuli. Thus, studying the morphology, dynamics, and physiology of vacuole is fundamentally important to advance knowledge in plant cell biology at large. The availability of fluorescent probes allows marking vacuoles in multiple ways. These may be fast, when using commercially available chemical dyes, or relatively slow, in the case of specific genetically encoded markers based on proteins directed either to the membrane of the vacuole (tonoplast) or to the vacuole lumen. Any of these approaches provides useful information about the morphology and physiology of the vacuole. 
    more » « less
  5. Abstract Light-activated theranostics offer promising opportunities for disease diagnosis, image-guided surgery, and site-specific personalized therapy. However, current fluorescent dyes are limited by low brightness, high cytotoxicity, poor tissue penetration, and unwanted side effects. To overcome these limitations, we demonstrate a platform for optoelectronic tuning, which allows independent control of the optical properties from the electronic properties of fluorescent organic salts. This is achieved through cation-anion pairing of organic salts that can modulate the frontier molecular orbital without impacting the bandgap. Optoelectronic tuning enables decoupled control over the cytotoxicity and phototoxicity of fluorescent organic salts by selective generation of mitochondrial reactive oxygen species that control cell viability. We show that through counterion pairing, organic salt nanoparticles can be tuned to be either nontoxic for enhanced imaging, or phototoxic for improved photodynamic therapy. 
    more » « less