We realize a magneto-optical trap (MOT) of titanium (Ti) atoms, performing laser cooling on the 498 nm transition between the long-lived metastable state and the excited state. Without the addition of any repumping light, we observe MOTs of the three stable, bosonic isotopes, , and . Up to atoms are trapped at a maximum density of and at a temperature of . By measuring the decay of the MOT, we constrain the leakage branching ratio of the cooling transition ( ) and the two-body loss coefficient ( ). Our approach to laser cooling Ti can be applied to other transition metals, enabling a significant expansion of the elements that can be laser cooled. Published by the American Physical Society2025
more »
« less
This content will become publicly available on February 1, 2026
Automated graph-based detection of quantum control schemes: Application to molecular laser cooling
One of the demanding frontiers in ultracold quantum science is identifying laser cooling schemes for complex atoms and molecules out of their vast spectra of internal states. Motivated by the prospect of expanding the set of available ultracold molecules for applications in fundamental physics, chemistry, astrochemistry, and quantum simulation, we propose and demonstrate an automated graph-based search approach for viable laser cooling schemes. The method is time efficient, reproduces the results of previous manual searches, and reveals a plethora of new potential laser cooling schemes. We discover laser cooling schemes for YO, , CN, and , including surprising schemes that start from highly excited states or do not rely on a strong main transition. A central insight of this work is that the reinterpretation of quantum states and transitions between them as a graph can dramatically enhance the ability to identify new quantum control schemes for complex quantum systems. As such, this approach will also apply to complex atoms and, in fact, any complex many-body quantum system with a discrete spectrum of internal states.
more »
« less
- Award ID(s):
- 2002461
- PAR ID:
- 10634600
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We analyze an optical atomic clock using two-photon transitions in rubidium. Four one- and two-color excitation schemes to probe the and fine-structure states are considered in detail. We compare key characteristics of Rb and two-photon clocks. The clock features a high signal-to-noise ratio due to two-photon decay at favorable wavelengths, low dc electric and magnetic susceptibilities, and minimal black-body shifts. Ac Stark shifts from the clock interrogation lasers are compensated by two-color Rabi-frequency matching. We identify a ‘magic’ wavelength near 1060 nm, which allows for in-trap, Doppler-free clock-transition interrogation with lattice-trapped cold atoms. From our analysis of clock statistics and systematics, we project a quantum-noise-limited relative clock stability at the -level, with integration timeτin seconds, and a relative accuracy of . We describe a potential architecture for implementing the proposed clock using a single telecom clock laser at 1550 nm, which is conducive to optical communication and long-distance clock comparisons. Our work could be of interest in efforts to realize small and portable Rb clocks and in high-precision measurements of atomic properties of Rb -states.more » « less
-
Laser cooling of large, complex molecules is a long-standing goal, instrumental for enabling new quantum technology and precision measurements. A primary consideration for the feasibility of laser cooling, which determines the efficiency and technical requirements of the process, is the number of excited-state decay pathways leading to vibrational excitations. Therefore, the assessment of the laser-cooling potential of a molecule begins with estimate of the vibrational branching ratios of the first few electronic excited states theoretically to find the optimum cooling scheme. Such calculations, typically done within the Born-Oppenheimer and harmonic approximations, have suggested that one leading candidate for large, polyatomic molecule laser cooling, alkaline earth phenoxides, can most efficiently be laser cooled via the third electronically excited ( ) state. Here, we report the first detailed spectroscopic characterization of the state in CaOPh and SrOPh. We find that nonadiabatic couplings between the , and states lead to substantial mixing, giving rise to vibronic states that enable additional decay pathways. Based on the intensity ratio of these extra decay channels, we estimate a nonadiabatic coupling strength of . While this coupling strength is small, the large density of vibrational states available at photonic energy scales in a polyatomic molecule leads to significant mixing. Only the lowest excited state is exempt from this coupling because it is highly separated from the ground state. Thus, this result is expected to be general for large molecules and implies that only the lowest electronic excited state should be considered when judging the suitability of a molecule for laser cooling.more » « less
-
Abstract This work describes the apparatus for NIST-F4, an updated cesium atomic fountain at the National Institute of Standards and Technology (NIST), and presents an accuracy evaluation of the fountain as a primary frequency standard. The fountain uses optical molasses to laser cool a cloud of cesium atoms and launch it vertically in a fountain geometry. In high-density mode, the fractional frequency stability of NIST-F4 is , whereτis the measurement time in seconds. The short-term stability is limited by quantum projection noise and by phase noise from the local oscillator, an oven-controlled crystal oscillator operating at 5 MHz. Systematic frequency shifts and their uncertainties have been evaluated, resulting in a systematic (type B) fractional frequency uncertainty .more » « less
-
Abstract The primary and secondary fragmentation dynamics of iodobenzene following its ionization at 120 eV were determined using three-dimensional velocity map imaging and covariance analysis. Site-selective iodine 4d ionization was used to populate a range of excited polycationic parent states, which primarily broke apart at the carbon-iodine bond to produce I+with phenyl or phenyl-like cations (CnH or CnH , withn = 1 – 6 andx = 1 – 5). The molecular products were produced with varying degrees of internal excitation and dehydrogenation, leading to stable and unstable outcomes. This further allowed the secondary dynamics of intermediates to be distinguished using native-frame covariance analysis, which isolated these processes in their own centre-of-mass reference frames. The mass resolution of the imaging mass spectrometer used for these measurements enabled the primary and secondary reaction channels to be specified at the level of individual hydrogen atoms, demonstrating the ability of covariance analysis to comprehensively measure the competing fragmentation channels of aryl cations, including those involving intermediate steps.more » « less
An official website of the United States government
