Abstract The multiple-try Metropolis method is an interesting extension of the classical Metropolis–Hastings algorithm. However, theoretical understanding about its usefulness and convergence behavior is still lacking. We here derive the exact convergence rate for the multiple-try Metropolis Independent sampler (MTM-IS) via an explicit eigen analysis. As a by-product, we prove that an naive application of the MTM-IS is less efficient than using the simpler approach of “thinned” independent Metropolis–Hastings method at the same computational cost. We further explore more variants and find it possible to design more efficient algorithms by applying MTM to part of the target distribution or creating correlated multiple trials.
more »
« less
This content will become publicly available on November 4, 2025
If At First You Don’t Succeed, Try, Try, Again...? Insights and LLM-informed Tooling for Detecting Retry Bugs in Software Systems
- Award ID(s):
- 2028427
- PAR ID:
- 10634705
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400712517
- Page Range / eLocation ID:
- 63 to 78
- Format(s):
- Medium: X
- Location:
- Austin TX USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Ad hominem attacks are those that target some feature of a person’s character instead of the position the person is maintaining. These attacks are harmful because they propagate implicit biases and diminish a person’s credibility. Since dialogue systems respond directly to user input, it is important to study ad hominems in dialogue responses. To this end, we propose categories of ad hominems, compose an annotated dataset, and build a classifier to analyze human and dialogue system responses to English Twitter posts. We specifically compare responses to Twitter topics about marginalized communities (#BlackLivesMatter, #MeToo) versus other topics (#Vegan, #WFH), because the abusive language of ad hominems could further amplify the skew of power away from marginalized populations. Furthermore, we propose a constrained decoding technique that uses salient n-gram similarity as a soft constraint for top-k sampling to reduce the amount of ad hominems generated. Our results indicate that 1) responses from both humans and DialoGPT contain more ad hominems for discussions around marginalized communities, 2) different quantities of ad hominems in the training data can influence the likelihood of generating ad hominems, and 3) we can use constrained decoding techniques to reduce ad hominems in generated dialogue responses.more » « less
-
A prominent issue faced by the education research community is that of student attrition. While large research efforts have been devoted to studying course-level attrition, widely referred to as dropout, less research has been focused on finer-grained assignment level attrition commonly observed in K-12 classrooms. This later instantiation of attrition, referred to in this paper as “stopout,” is characterized by students failing to complete their assigned work, but the cause of such behavior are not often known. This becomes a large problem for educators and developers of learning platforms as students who give up on assignments early are missing opportunities to learn and practice the material which may affect future performance on related topics; similarly, it is difficult for researchers to develop, and subsequently difficult for computer-based systems to deploy interventions aimed at promoting productive persistence once a student has ceased interaction with the software. This difficulty highlights the importance to understand and identify early signs of stopout behavior in order to provide aid to students preemptively to promote productive persistence in their learning. While many cases of student stopout may be attributable to gaps in student knowledge and indicative of struggle, student attributes such as grit and persistence may be further affected by other factors. This work focuses on identifying different forms of stopout behavior in the context of middle school math by observing student behaviors at the sub-problem level. We find that students exhibit disproportionate stopout on the first problem of their assignments in comparison to stopout on subsequent problems, identifying a behavior that we call “refusal,” and use the emerging patterns of student activity to better understand the potential causes underlying stopout behavior early in an assignment.more » « less
-
null (Ed.)Email remains one of the most widely used methods of communication globally. However, successful phishing email attacks and subsequent costs remain unreasonably high despite technical advances in defenses that limit phishing scams. In this paper, we examine human detection of phishing. We found that non-experts go through four different sensemaking processes to determine if an email is a phishing message; they use different knowledge and skills to become suspicious differently in each process. Additionally, non-experts rely on their social connections as an investigative tool to determine if an email is a phishing scam. We discuss the impact of our findings on phishing training and technology.more » « less
An official website of the United States government
