skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convergence rate of multiple-try Metropolis independent sampler
Abstract The multiple-try Metropolis method is an interesting extension of the classical Metropolis–Hastings algorithm. However, theoretical understanding about its usefulness and convergence behavior is still lacking. We here derive the exact convergence rate for the multiple-try Metropolis Independent sampler (MTM-IS) via an explicit eigen analysis. As a by-product, we prove that an naive application of the MTM-IS is less efficient than using the simpler approach of “thinned” independent Metropolis–Hastings method at the same computational cost. We further explore more variants and find it possible to design more efficient algorithms by applying MTM to part of the target distribution or creating correlated multiple trials.  more » « less
Award ID(s):
1903139 2015411
PAR ID:
10466241
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Statistics and Computing
Volume:
33
Issue:
4
ISSN:
0960-3174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Under mild assumptions, we show that the exact convergence rate in total variation is also exact in weaker Wasserstein distances for the Metropolis–Hastings independence sampler. We develop a new upper and lower bound on the worst-case Wasserstein distance when initialized from points. For an arbitrary point initialization, we show that the convergence rate is the same and matches the convergence rate in total variation. We derive exact convergence expressions for more general Wasserstein distances when initialization is at a specific point. Using optimization, we construct a novel centered independent proposal to develop exact convergence rates in Bayesian quantile regression and many generalized linear model settings. We show that the exact convergence rate can be upper bounded in Bayesian binary response regression (e.g. logistic and probit) when the sample size and dimension grow together. 
    more » « less
  2. Banerjee, Arindam; Fukumizu, Kenji (Ed.)
    Couplings play a central role in the analysis of Markov chain Monte Carlo algorithms and appear increasingly often in the algorithms themselves, e.g. in convergence diagnostics, parallelization, and variance reduction techniques. Existing couplings of the Metropolis-Hastings algorithm handle the proposal and acceptance steps separately and fall short of the upper bound on one-step meeting probabilities given by the coupling inequality. This paper introduces maximal couplings which achieve this bound while retaining the practical advantages of current methods. We consider the properties of these couplings and examine their behavior on a selection of numerical examples. 
    more » « less
  3. Electromagnetic compatibility (EMC) is a key requirement for electronic system design. Meeting the EMC regulations becomes more challenging as the component density increases and operation frequencies spread to multiple bands. Coupling between transmission lines is a common manifestation of electromagnetic interference (EMI). In this work, we present a novel method to suppress the noise between two transmission lines by using a metamaterial (MTM) structure. This MTM design helps to mitigate the coupling between the two transmission lines where one acts as an aggressor and the other as the victim. This approach helps miniaturize the solutions such as shielding or filtering to mitigate the noise. MTM provides good protection in terms of EMI isolation, is inexpensive, and has a smaller footprint compared to traditional EMC solutions. The second part of this article studies the impact of the relative permittivity (ε r ) of the MTM structure. Changing the ε r modifies the transmission and absorption bands. Thus, that can help in modulating the operation of the MTM through appropriate designs. The MTM designs used in this work enhanced the isolation between the victim and aggressor by 1–13.5 dB across 1–5 GHz. 
    more » « less
  4. We study the problem of finding the maximum of a function defined on the nodes of a connected graph. The goal is to identify a node where the function obtains its maximum. We focus on local iterative algorithms, which traverse the nodes of the graph along a path, and the next iterate is chosen from the neighbors of the current iterate with probability distribution determined by the function values at the current iterate and its neighbors. We study two algorithms corresponding to a Metropolis-Hastings random walk with different transition kernels: (i) The first algorithm is an exponentially weighted random walk governed by a parameter gamma. (ii) The second algorithm is defined with respect to the graph Laplacian and a smoothness parameter k. We derive convergence rates for the two algorithms in terms of total variation distance and hitting times. We also provide simulations showing the relative convergence rates of our algorithms in comparison to an unbiased random walk, as a function of the smoothness of the graph function. Our algorithms may be categorized as a new class of “descent-based” methods for function maximization on the nodes of a graph. 
    more » « less
  5. ABSTRACT We introduce Bilby-MCMC, a Markov chain Monte Carlo sampling algorithm tuned for the analysis of gravitational waves from merging compact objects. Bilby-MCMC provides a parallel-tempered ensemble Metropolis-Hastings sampler with access to a block-updating proposal library including problem-specific and machine learning proposals. We demonstrate that learning proposals can produce over a 10-fold improvement in efficiency by reducing the autocorrelation time. Using a variety of standard and problem-specific tests, we validate the ability of the Bilby-MCMC sampler to produce independent posterior samples and estimate the Bayesian evidence. Compared to the widely used Dynesty nested sampling algorithm, Bilby-MCMC is less efficient in producing independent posterior samples and less accurate in its estimation of the evidence. However, we find that posterior samples drawn from the Bilby-MCMC sampler are more robust: never failing to pass our validation tests. Meanwhile, the Dynesty sampler fails the difficult-to-sample Rosenbrock likelihood test, over constraining the posterior. For CBC problems, this highlights the importance of cross-sampler comparisons to ensure results are robust to sampling error. Finally, Bilby-MCMC can be embarrassingly and asynchronously parallelized making it highly suitable for reducing the analysis wall-time using a High Throughput Computing environment. Bilby-MCMC may be a useful tool for the rapid and robust analysis of gravitational-wave signals during the advanced detector era and we expect it to have utility throughout astrophysics. 
    more » « less