skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Self-organization in computation and chemistry: Return to AlChemy
How do complex adaptive systems, such as life, emerge from simple constituent parts? In the 1990s, Walter Fontana and Leo Buss proposed a novel modeling approach to this question, based on a formal model of computation known as the λ calculus. The model demonstrated how simple rules, embedded in a combinatorially large space of possibilities, could yield complex, dynamically stable organizations, reminiscent of biochemical reaction networks. Here, we revisit this classic model, called AlChemy, which has been understudied over the past 30 years. We reproduce the original results and study the robustness of those results using the greater computing resources available today. Our analysis reveals several unanticipated features of the system, demonstrating a surprising mix of dynamical robustness and fragility. Specifically, we find that complex, stable organizations emerge more frequently than previously expected, that these organizations are robust against collapse into trivial fixed points, but that these stable organizations cannot be easily combined into higher order entities. We also study the role played by the random generators used in the model, characterizing the initial distribution of objects produced by two random expression generators, and their consequences on the results. Finally, we provide a constructive proof that shows how an extension of the model, based on the typed λ calculus, could simulate transitions between arbitrary states in any possible chemical reaction network, thus indicating a concrete connection between AlChemy and chemical reaction networks. We conclude with a discussion of possible applications of AlChemy to self-organization in modern programming languages and quantitative approaches to the origin of life.  more » « less
Award ID(s):
2211750 2211749
PAR ID:
10634736
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Chaos: An Interdisciplinary Journal of Nonlinear Science
Volume:
34
Issue:
9
ISSN:
1054-1500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. External flows of energy, entropy, and matter can cause sudden transitions in the stability of biological and industrial systems, fundamentally altering their dynamical function. How might we control and design these transitions in chemical reaction networks? Here, we analyze transitions giving rise to complex behavior in random reaction networks subject to external driving forces. In the absence of driving, we characterize the uniqueness of the steady state and identify the percolation of a giant connected component in these networks as the number of reactions increases. When subject to chemical driving (influx and outflux of chemical species), the steady state can undergo bifurcations, leading to multistability or oscillatory dynamics. By quantifying the prevalence of these bifurcations, we show how chemical driving and network sparsity tend to promote the emergence of these complex dynamics and increased rates of entropy production. We show that catalysis also plays an important role in the emergence of complexity, strongly correlating with the prevalence of bifurcations. Our results suggest that coupling a minimal number of chemical signatures with external driving can lead to features present in biochemical processes and abiogenesis. 
    more » « less
  2. A robust system should perform well under random failures or targeted attacks, and networks have been widely used to model the underlying structure of complex systems such as communication, infrastructure, and transportation networks. Hence, network robustness becomes critical to understanding system robustness. In this paper, we propose a spectral measure for network robustness: the second spectral moment m2 of the network. Our results show that a smaller second spectral moment m2 indicates a more robust network. We demonstrate both theoretically and with extensive empirical studies that the second spectral moment can help (1) capture various traditional measures of network robustness; (2) assess the robustness of networks; (3) design networks with controlled robustness; and (4) study how complex networked systems (e.g., power systems) behave under cascading failures. 
    more » « less
  3. Kurtz, Jurgen (Ed.)
    In neuroscience, delayed synaptic activity plays a pivotal and pervasive role in influencing synchronization, oscillation, and information-processing properties of neural networks. In small rhythm-generating networks, such as central pattern generators (CPGs), time-delays may regulate and determine the stability and variability of rhythmic activity, enabling organisms to adapt to environmental changes, and coordinate diverse locomotion patterns in both function and dysfunction. Here, we examine the dynamics of a three-cell CPG model in which time-delays are introduced into reciprocally inhibitory synapses between constituent neurons. We employ computational analysis to investigate the multiplicity and robustness of various rhythms observed in such multi-modal neural networks. Our approach involves deriving exhaustive two-dimensional Poincaré return maps for phase-lags between constituent neurons, where stable fixed points and invariant curves correspond to various phase-locked and phase-slipping/jitter rhythms. These rhythms emerge and disappear through various local (saddle-node, torus) and non-local (homoclinic) bifurcations, highlighting the multi-functionality (modality) observed in such small neural networks with fast inhibitory synapses. 
    more » « less
  4. Many systems in physics, chemistry, and biology exhibit oscillations with a pronounced random component. Such stochastic oscillations can emerge via different mechanisms, for example, linear dynamics of a stable focus with fluctuations, limit-cycle systems perturbed by noise, or excitable systems in which random inputs lead to a train of pulses. Despite their diverse origins, the phenomenology of random oscillations can be strikingly similar. Here, we introduce a nonlinear transformation of stochastic oscillators to a complex-valued function Q 1 * ( x ) that greatly simplifies and unifies the mathematical description of the oscillator’s spontaneous activity, its response to an external time-dependent perturbation, and the correlation statistics of different oscillators that are weakly coupled. The function Q 1 * ( x ) is the eigenfunction of the Kolmogorov backward operator with the least negative (but nonvanishing) eigenvalue λ 1 = μ 1 + iω 1 . The resulting power spectrum of the complex-valued function is exactly given by a Lorentz spectrum with peak frequency ω 1 and half-width μ 1 ; its susceptibility with respect to a weak external forcing is given by a simple one-pole filter, centered around ω 1 ; and the cross-spectrum between two coupled oscillators can be easily expressed by a combination of the spontaneous power spectra of the uncoupled systems and their susceptibilities. Our approach makes qualitatively different stochastic oscillators comparable, provides simple characteristics for the coherence of the random oscillation, and gives a framework for the description of weakly coupled oscillators. 
    more » « less
  5. Abstract Despite the advances in discovering new nuclei, modeling microscopic nuclear structure, nuclear reactors, and stellar nucleosynthesis, we still lack a systemic tool, such as a network approach, to understand the structure and dynamics of over 70 thousands reactions compiled in JINA REACLIB. To this end, we develop an analysis framework, under which it is simple to know which reactions generally are possible and which are not, by counting neutrons and protons incoming to and outgoing from any target nucleus. Specifically, we assemble here a nuclear reaction network in which a node represents a nuclide, and a link represents a direct reaction between nuclides. Interestingly, the degree distribution of nuclear network exhibits a bimodal distribution that significantly deviates from the common power-law distribution of scale-free networks and Poisson distribution of random networks. Based on the dynamics from the cross section parameterizations in REACLIB, we surprisingly find that the distribution is universal for reactions with a rate below the threshold, λ < e − T γ , where T is the temperature and γ ≈ 1.05. Moreover, we discover three rules that govern the structure pattern of nuclear reaction network: (i) reaction-type is determined by linking choices, (ii) network distances between the reacting nuclides on 2D grid of Z vs N of nuclides are short, and (iii) each node in- and out-degrees are close to each other. By incorporating these three rules, our model universally unveils the underlying nuclear reaction patterns hidden in a large and dense nuclear reaction network regardless of nuclide chart expansions. It enables us to predict missing links that represent possible new nuclear reactions not yet discovered. 
    more » « less