Abstract We propose a combined model, which integrates the latent factor model and a sparse graphical model, for network data. It is noticed that neither a latent factor model nor a sparse graphical model alone may be sufficient to capture the structure of the data. The proposed model has a latent (i.e., factor analysis) model to represent the main trends (a.k.a., factors), and a sparse graphical component that captures the remaining ad‐hoc dependence. Model selection and parameter estimation are carried out simultaneously via a penalized likelihood approach. The convexity of the objective function allows us to develop an efficient algorithm, while the penalty terms push towards low‐dimensional latent components and a sparse graphical structure. The effectiveness of our model is demonstrated via simulation studies, and the model is also applied to four real datasets: Zachary's Karate club data, Kreb's U.S. political book dataset (http://www.orgnet.com), U.S. political blog dataset , and citation network of statisticians; showing meaningful performances in practical situations.
more »
« less
This content will become publicly available on February 21, 2026
High-dimensional Factor Analysis for Network-linked data
Abstract Factor analysis is a widely used statistical tool in many scientific disciplines, such as psychology, economics, and sociology. As observations linked by networks become increasingly common, incorporating network structures into factor analysis remains an open problem. In this paper, we focus on high-dimensional factor analysis involving network-connected observations, and propose a generalized factor model with latent factors that account for both the network structure and the dependence structure among high-dimensional variables. These latent factors can be shared by the high-dimensional variables and the network, or exclusively applied to either of them. We develop a computationally efficient estimation procedure and establish asymptotic inferential theories. Notably, we show that by borrowing information from the network, the proposed estimator of the factor loading matrix achieves optimal asymptotic variance under much milder identifiability constraints than existing literature. Furthermore, we develop a hypothesis testing procedure to tackle the challenge of discerning the shared and individual latent factors’ structure. The finite sample performance of the proposed method is demonstrated through simulation studies and a real-world dataset involving a statistician co-authorship network.
more »
« less
- PAR ID:
- 10634740
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- Biometrika
- ISSN:
- 0006-3444
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper studies a tensor factor model that augments samples from multiple classes. The nuisance common patterns shared across classes are characterised by pervasive noises, and the patterns that distinguish different classes are represented by class‐specific components. Additionally, the pervasive component is modelled by the production of a low‐rank tensor latent factor and several factor loading matrices. This augmented tensor factor model can be expanded to a series of matrix variate tensor factor models and estimated using principal component analysis. The ranks of latent factors are estimated using a modified eigen‐ratio method. The proposed estimators have fast convergence rates and enjoy the blessing of dimensionality. The proposed factor model is applied to address the challenge of overlapping issues in image classification through a factor adjustment procedure. The procedure is shown to be powerful through synthetic experiments and an application to COVID‐19 pneumonia diagnosis from frontal chest X‐ray images.more » « less
-
Analyzing multiple studies allows leveraging data from a range of sources and populations, but until recently, there have been limited methodologies to approach the joint unsupervised analysis of multiple high-dimensional studies. A recent method, Bayesian Multi-Study Factor Analysis (BMSFA), identifies latent factors common to all studies, as well as latent factors specific to individual studies. However, BMSFA does not allow for partially shared factors, i.e. latent factors shared by more than one but less than all studies. We extend BMSFA by introducing a new method, Tetris, for Bayesian combinatorial multi-study factor analysis, which identifies latent factors that can be shared by any combination of studies. We model the subsets of studies that share latent factors with an Indian Buffet Process. We test our method with an extensive range of simulations, and showcase its utility not only in dimension reduction but also in covariance estimation. Finally, we apply Tetris to high-dimensional gene expression datasets to identify patterns in breast cancer gene expression, both within and across known classes defined by germline mutations.more » « less
-
Summary Network latent space models assume that each node is associated with an unobserved latent position in a Euclidean space, and such latent variables determine the probability of two nodes connecting with each other. In many applications, nodes in the network are often observed along with high-dimensional node variables, and these node variables provide important information for understanding the network structure. However, classical network latent space models have several limitations in incorporating node variables. In this paper, we propose a joint latent space model where we assume that the latent variables not only explain the network structure, but are also informative for the multivariate node variables. We develop a projected gradient descent algorithm that estimates the latent positions using a criterion incorporating both network structure and node variables. We establish theoretical properties of the estimators and provide insights into how incorporating high-dimensional node variables could improve the estimation accuracy of the latent positions. We demonstrate the improvement in latent variable estimation and the improvements in associated downstream tasks, such as missing value imputation for node variables, by simulation studies and an application to a Facebook data example.more » « less
-
null (Ed.)Large-scale panel data is ubiquitous in many modern data science applications. Conventional panel data analysis methods fail to address the new challenges, like individual impacts of covariates, endogeneity, embedded low-dimensional structure, and heavy-tailed errors, arising from the innovation of data collection platforms on which applications operate. In response to these challenges, this paper studies large-scale panel data with an interactive effects model. This model takes into account the individual impacts of covariates on each spatial node and removes the exogenous condition by allowing latent factors to affect both covariates and errors. Besides, we waive the sub-Gaussian assumption and allow the errors to be heavy-tailed. Further, we propose a data-driven procedure to learn a parsimonious yet flexible homogeneity structure embedded in high-dimensional individual impacts of covariates. The homogeneity structure assumes that there exists a partition of regression coeffcients where the coeffcients are the same within each group but different between the groups. The homogeneity structure is flexible as it contains many widely assumed low dimensional structures (sparsity, global impact, etc.) as its special cases. Non-asymptotic properties are established to justify the proposed learning procedure. Extensive numerical experiments demonstrate the advantage of the proposed learning procedure over conventional methods especially when the data are generated from heavy-tailed distributions.more » « less
An official website of the United States government
