skip to main content


This content will become publicly available on September 1, 2025

Title: Tensor factor adjustment for image classification with pervasive noises
Abstract

This paper studies a tensor factor model that augments samples from multiple classes. The nuisance common patterns shared across classes are characterised by pervasive noises, and the patterns that distinguish different classes are represented by class‐specific components. Additionally, the pervasive component is modelled by the production of a low‐rank tensor latent factor and several factor loading matrices. This augmented tensor factor model can be expanded to a series of matrix variate tensor factor models and estimated using principal component analysis. The ranks of latent factors are estimated using a modified eigen‐ratio method. The proposed estimators have fast convergence rates and enjoy the blessing of dimensionality. The proposed factor model is applied to address the challenge of overlapping issues in image classification through a factor adjustment procedure. The procedure is shown to be powerful through synthetic experiments and an application to COVID‐19 pneumonia diagnosis from frontal chest X‐ray images.

 
more » « less
Award ID(s):
2324389 2210468
NSF-PAR ID:
10523131
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley Online Library
Date Published:
Journal Name:
Stat
Volume:
13
Issue:
3
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multimodal data arise in various applications where information about the same phenomenon is acquired from multiple sensors and across different imaging modalities. Learning from multimodal data is of great interest in machine learning and statistics research as this offers the possibility of capturing complementary information among modalities. Multimodal modeling helps to explain the interdependence between heterogeneous data sources, discovers new insights that may not be available from a single modality, and improves decision‐making. Recently, coupled matrix–tensor factorization has been introduced for multimodal data fusion to jointly estimate latent factors and identify complex interdependence among the latent factors. However, most of the prior work on coupled matrix–tensor factors focuses on unsupervised learning and there is little work on supervised learning using the jointly estimated latent factors. This paper considers the multimodal tensor data classification problem. A coupled support tensor machine (C‐STM) built upon the latent factors jointly estimated from the advanced coupled matrix–tensor factorization is proposed. C‐STM combines individual and shared latent factors with multiple kernels and estimates a maximal‐margin classifier for coupled matrix–tensor data. The classification risk of C‐STM is shown to converge to the optimal Bayes risk, making it a statistically consistent rule. C‐STM is validated through simulation studies as well as a simultaneous analysis on electroencephalography with functional magnetic resonance imaging data. The empirical evidence shows that C‐STM can utilize information from multiple sources and provide a better classification performance than traditional single‐mode classifiers.

     
    more » « less
  2. Abstract

    Observations in various applications are frequently represented as a time series of multidimensional arrays, called tensor time series, preserving the inherent multidimensional structure. In this paper, we present a factor model approach, in a form similar to tensor CANDECOMP/PARAFAC (CP) decomposition, to the analysis of high-dimensional dynamic tensor time series. As the loading vectors are uniquely defined but not necessarily orthogonal, it is significantly different from the existing tensor factor models based on Tucker-type tensor decomposition. The model structure allows for a set of uncorrelated one-dimensional latent dynamic factor processes, making it much more convenient to study the underlying dynamics of the time series. A new high-order projection estimator is proposed for such a factor model, utilizing the special structure and the idea of the higher order orthogonal iteration procedures commonly used in Tucker-type tensor factor model and general tensor CP decomposition procedures. Theoretical investigation provides statistical error bounds for the proposed methods, which shows the significant advantage of utilizing the special model structure. Simulation study is conducted to further demonstrate the finite sample properties of the estimators. Real data application is used to illustrate the model and its interpretations.

     
    more » « less
  3. Summary

    We propose and investigate an additive regression model for symmetric positive-definite matrix-valued responses and multiple scalar predictors. The model exploits the Abelian group structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric positive-definite matrices and naturally extends to general Abelian Lie groups. The proposed additive model is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions, but also allows one to generalize the proposed additive model to general Riemannian manifolds. Optimal asymptotic convergence rates and normality of the estimated component functions are established, and numerical studies show that the proposed model enjoys good numerical performance, and is not subject to the curse of dimensionality when there are multiple predictors. The practical merits of the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data.

     
    more » « less
  4. Summary

    Motivated by an imaging study, the paper develops a non-parametric testing procedure for testing the null hypothesis that two samples of curves observed at discrete grids and with noise have the same underlying distribution. The objective is to compare formally white matter tract profiles between healthy individuals and multiple-sclerosis patients, as assessed by conventional diffusion tensor imaging measures. We propose to decompose the curves by using functional principal component analysis of a mixture process, which we refer to as marginal functional principal component analysis. This approach reduces the dimension of the testing problem in a way that enables the use of traditional non-parametric univariate testing procedures. The procedure is computationally efficient and accommodates different sampling designs. Numerical studies are presented to validate the size and power properties of the test in many realistic scenarios. In these cases, the test proposed has been found to be more powerful than its primary competitor. Application to the diffusion tensor imaging data reveals that all the tracts studied are associated with multiple sclerosis and the choice of the diffusion tensor image measurement is important when assessing axonal disruption.

     
    more » « less
  5. The set of equations to be solved for parameter estimation in model updating has no unique solution when, as will often be the case in structural applications, the dimensionality of the model exceeds the number of target parameters estimated from experiments. One approach for enlarging the target space is to create closed-loop systems that, in addition, can be designed with pole sensitivities favorable for updating the model. The present paper will focus on designing gains for model updating using a recently proposed virtual implementation of output feedback, which allows computation of several closed-loop systems, from a single open loop realization and removes the constraint of closed-loop stability. The gains are designed through an eigenstructure assignment procedure, in which the model parameters of interest in the updating are divided into two different classes; one where the pole sensitivities with respect to the parameters are to be enhanced and one where they are to be reduced. A numerical example with a structural system is presented that demonstrates the merit of the proposed gain design procedure. 
    more » « less