skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2026

Title: End-Effector Position Estimation on Off-Road Vehicles Using IMUs
Estimating the position of the bucket or tool on an agricultural/construction vehicle is becoming increasingly important to enable operator assistance such as automation of repetitive movements. Such end-effector position estimation is normally done through measurement of individual actuator’s movements inside kinematic linkage mechanisms that move the end-effectors. This paper develops an alternate inertial measurement unit (IMU) based end-effector position estimation system that offers significant advantages of low cost and easy installation. An IMU located on a rotating linkage in a mechanism is used to estimate the angular motion of the linkage. Key challenges arise from the fact that the accelerometer signals of the IMU experience significant disturbances from dynamic accelerations and from vehicle and terrain-induced vibrations. First, an adaptive feedforward algorithm is used to remove the influence of vibrations on the accelerometer signals. Then a nonlinear observer is utilized to combine accelerometer and gyroscope signals and reject the influence of vehicle accelerations. Experimental results are presented from a laboratory test rig and preliminary experimental results from a full-scale tracked skid steer loader vehicle. The results show that an accuracy better than 1 degree in linkage orientation estimation is achieved in the presence of vibration disturbances.  more » « less
Award ID(s):
2329798
PAR ID:
10635092
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-6937-2
Page Range / eLocation ID:
4591 to 4596
Format(s):
Medium: X
Location:
Denver, CO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There have been significant advances in biosignal extraction techniques to drive external biomechatronic devices or to use as inputs to sophisticated human machine interfaces. The control signals are typically derived from biological signals such as myoelectric measurements made either from the surface of the skin or subcutaneously. Other biosignal sensing modalities are emerging. With improvements in sensing modalities and control algorithms, it is becoming possible to robustly control the target position of an end-effector. It remains largely unknown to what extent these improvements can lead to naturalistic human-like movement. In this paper, we sought to answer this question. We utilized a sensing paradigm called sonomyography based on continuous ultrasound imaging of forearm muscles. Unlike myoelectric control strategies which measure electrical activation and use the extracted signals to determine the velocity of an end-effector; sonomyography measures muscle deformation directly with ultrasound and uses the extracted signals to proportionally control the position of an end-effector. Previously, we showed that users were able to accurately and precisely perform a virtual target acquisition task using sonomyography. In this work, we investigate the time course of the control trajectories derived from sonomyography. We show that the time course of the sonomyography-derived trajectories that users take to reach virtual targets reflect the trajectories shown to be typical for kinematic characteristics observed in biological limbs. Specifically, during a target acquisition task, the velocity profiles followed a minimum jerk trajectory shown for point-to-point arm reaching movements, with similar time to target. In addition, the trajectories based on ultrasound imaging result in a systematic delay and scaling of peak movement velocity as the movement distance increased. We believe this is the first evaluation of similarities in control policies in coordinated movements in jointed limbs, and those based on position control signals extracted at the individual muscle level. These results have strong implications for the future development of control paradigms for assistive technologies. 
    more » « less
  2. null (Ed.)
    This article presents the design process of a supernumerary wearable robotic forearm (WRF), along with methods for stabilizing the robot’s end-effector using human motion prediction. The device acts as a lightweight “third arm” for the user, extending their reach during handovers and manipulation in close-range collaborative activities. It was developed iteratively, following a user-centered design process that included an online survey, contextual inquiry, and an in-person usability study. Simulations show that the WRF significantly enhances a wearer’s reachable workspace volume, while remaining within biomechanical ergonomic load limits during typical usage scenarios. While operating the device in such scenarios, the user introduces disturbances in its pose due to their body movements. We present two methods to overcome these disturbances: autoregressive (AR) time series and a recurrent neural network (RNN). These models were used for forecasting the wearer’s body movements to compensate for disturbances, with prediction horizons determined through linear system identification. The models were trained offline on a subset of the KIT Human Motion Database, and tested in five usage scenarios to keep the 3D pose of the WRF’s end-effector static. The addition of the predictive models reduced the end-effector position errors by up to 26% compared to direct feedback control. 
    more » « less
  3. This paper introduces a new invariant extended Kalman filter design that produces real-time state estimates and rapid error convergence for the estimation of the human body movement even in the presence of sensor misalignment and initial state estimation errors. The filter fuses the data returned by an inertial measurement unit (IMU) attached to the body (e.g., pelvis or chest) and a virtual measurement of zero stance-foot velocity (i.e., leg odometry). The key novelty of the proposed filter lies in that its process model meets the group affine property while the filter explicitly addresses the IMU placement error by formulating its stochastic process model as Brownian motions and incorporating the error in the leg odometry. Although the measurement model is imperfect (i.e., it does not possess an invariant observation form) and thus its linearization relies on the state estimate, experimental results demonstrate fast convergence of the proposed filter (within 0.2 seconds) during squatting motions even under significant IMU placement inaccuracy and initial estimation errors. 
    more » « less
  4. Unmanned Aerial Vehicles (UAVs) find increasing use in mission critical tasks both in civilian and military operations. Most UAVs rely on Inertial Measurement Units (IMUs) to calculate vehicle attitude and track vehicle position. Therefore, an incorrect IMU reading can cause a vehicle to destabilize, and possibly even crash. In this paper, we describe how a strategic adversary might be able to introduce spurious IMU values that can deviate a vehicle from its mission-specified path while at the same time evade customary anomaly detection mechanisms, thereby effectively perpetuating a “stealthy attack” on the system. We explore the feasibility of a Deep Neural Network (DNN) that uses a vehicle's state information to calculate the applicable IMU values to perpetrate such an attack. The eventual goal is to cause a vehicle to perturb enough from its mission parameters to compromise mission reliability, while, from the operator's perspective, the vehicle still appears to be operating normally. 
    more » « less
  5. null (Ed.)
    The objective of this study was to test the feasibility of using a pair of wearable inertial measurement unit (IMU) sensors to accurately capture dynamic joint motion data during simulated occupational conditions. Eleven subjects (5 males and 6 females) performed repetitive neck, low-back, and shoulder motions simulating low- and high-difficulty occupational tasks in a laboratory setting. Kinematics for each of the 3 joints were measured via IMU sensors in addition to a “gold standard” passivemarker optical motion capture system. The IMU accuracy was benchmarked relative to the optical motion capture system, and IMU sensitivity to low- and high-difficulty tasks was evaluated. The accuracy of the IMU sensors was found to be very good on average, but significant positional drift was observed in some trials. In addition, IMU measurements were shown to be sensitive to differences in task difficulty in all 3 joints (P < .05). These results demonstrate the feasibility for using wearable IMU sensors to capture kinematic exposures as potential indicators of occupational injury risk. Velocities and accelerations demonstrate the most potential for developing risk metrics since they are sensitive to task difficulty and less sensitive to drift than rotational position measurements. 
    more » « less