skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Exact results in softly broken supersymmetric chiral gauge theories with flavor
We present exact results in softly broken supersymmetric SU ( N C ) chiral gauge theories with charged fermions in one antisymmetric, N F fundamental, and N C + N F 4 antifundamental representations. We achieve this by considering the supersymmetric version of these theories and utilizing anomaly mediated supersymmetry breaking at a scale m Λ to generate a vacuum. The connection to nonsupersymmetric theories is then conjectured in the limit m . For odd N C , we determine the massless fermions and unbroken global symmetries in the infrared. For even N C , we find global symmetries are nonanomalous and no massless fermions. In all cases, the symmetry breaking patterns differ from what the tumbling hypothesis would suggest.  more » « less
Award ID(s):
2210390
PAR ID:
10635148
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
112
Issue:
2
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, B P P decays ( B = { B 0 , B + , B s 0 } , P = { π , K } ) were analyzed under the assumption of flavor SU(3) symmetry ( SU ( 3 ) F ). Although the individual fits to Δ S = 0 or Δ S = 1 decays are good, it was found that the combined fit is very poor: there is a 3.6 σ disagreement with the SU ( 3 ) F limit of the standard model ( SM SU ( 3 ) F ). One can remove this discrepancy by adding SU ( 3 ) F -breaking effects, but 1000% SU ( 3 ) F breaking is required. In this paper, we extend this analysis to include decays in which there is an η and/or η meson in the final state. We now find that the combined fit exhibits a 4.1 σ discrepancy with the SM SU ( 3 ) F , and 1000% SU ( 3 ) F -breaking effects are still required to explain the data. These results are rigorous, group-theoretically—no theoretical assumptions have been made. But when one adds some theoretical input motivated by QCD factorization, the discrepancy with the SM SU ( 3 ) F grows to 4.9 σ
    more » « less
  2. In this Letter, we perform fits to B P P decays, where B = { B 0 , B + , B s 0 } and the pseudoscalar P = { π , K } , under the assumption of flavor SU(3) symmetry [ SU ( 3 ) F ]. Although the fits to Δ S = 0 or Δ S = 1 decays individually are good, the combined fit is very poor: there is a 3.6 σ disagreement with the SU ( 3 ) F limit of the standard model ( SM SU ( 3 ) F ). One can remove this discrepancy by adding SU ( 3 ) F -breaking effects, but 1000% SU ( 3 ) F breaking is required. The above results are rigorous, group theoretically—no dynamical assumptions have been made. When one adds an assumption motivated by QCD factorization, the discrepancy with the SM SU ( 3 ) F grows to 4.4 σ . Published by the American Physical Society2024 
    more » « less
  3. We present constraints on the f ( R ) gravity model using a sample of 1005 galaxy clusters in the redshift range 0.25–1.78 that have been selected through the thermal Sunyaev-Zel’dovich effect from South Pole Telescope data and subjected to optical and near-infrared confirmation with the multicomponent matched filter algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey Year 3 data for 688 clusters at z < 0.95 and from the Hubble Space Telescope for 39 clusters with 0.6 < z < 1.7 . Our cluster sample is a powerful probe of f ( R ) gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semianalytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background temperature and polarization anisotropy measurements from the Planck 2018 release, we derive robust constraints on the f ( R ) parameter f R 0 . Our results, log 10 | f R 0 | < 5.32 at the 95% credible level, are the tightest current constraints on f ( R ) gravity from cosmological scales. This upper limit rules out f ( R ) -like deviations from general relativity that result in more than a 20 % enhancement of the cluster population on mass scales M 200 c > 3 × 10 14 M . Published by the American Physical Society2025 
    more » « less
  4. R -parity can be extended to a continuous global U ( 1 ) R symmetry. We investigate whether an anomalous U ( 1 ) R can be identified as the Peccei-Quinn symmetry suitable for solving the strong C P problem within supersymmetric extensions of the Standard Model. In this case, U ( 1 ) R is broken at some intermediate scale and the quantum chromodynamics axion is the R -axion. Moreover, the R -symmetry can potentially be gauged via the Green-Schwarz mechanism within completions to supergravity, in order to evade the axion quality problem. Obstacles to realizing this scenario are highlighted and phenomenologically viable approaches are identified. Published by the American Physical Society2025 
    more » « less
  5. We search for excited charmed baryons in the Λ c + η system using a data sample corresponding to an integrated luminosity of 980 fb 1 . The data were collected by the Belle detector at the KEKB e + e asymmetric-energy collider. No significant signals are found in the Λ c + η mass spectrum, including the known Λ c ( 2880 ) + and Λ c ( 2940 ) + . Clear Λ c ( 2880 ) + and Λ c ( 2940 ) + signals are observed in the p D 0 mass spectrum. We set upper limits at 90% credibility level on ratios of branching fractions of Λ c ( 2880 ) + and Λ c ( 2940 ) + decaying to Λ c + η relative to Σ c ( 2455 ) π of < 0.13 for the Λ c ( 2880 ) + and < 1.11 for the Λ c ( 2940 ) + . We measure ratios of branching fractions of Λ c ( 2880 ) + and Λ c ( 2940 ) + decaying to p D 0 relative to Σ c ( 2455 ) π of 0.75 ± 0.03 ( stat ) ± 0.07 ( syst ) for the Λ c ( 2880 ) + and 3.59 ± 0.21 ( stat ) ± 0.56 ( syst ) for the Λ c ( 2940 ) + . Published by the American Physical Society2024 
    more » « less