skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Carbon Isotopes in Magmatic Systems: Measurements, Interpretations, and the Carbon Isotopic Signature of the Earth’s Mantle
Carbon isotopes in magmatic systems serve as powerful tracers for understanding magma evolution, mantle processes, the deep carbon cycle, and the origin of Earth’s carbon. This review provides a comprehensive overview of carbon isotope measurements and behavior in magmatic systems, highlighting recent technological advancements and scientific insights. We begin by examining methods for measuring δ13C in volcanic gases, vesicles, glasses, melt, and fluid inclusions. We then explore the behavior of carbon isotopes in magmatic systems, especially during magmatic degassing. Finally, we evaluate what recent advances mean for our understanding of the carbon isotope signature of the Earth’s upper mantle.  more » « less
Award ID(s):
2407264
PAR ID:
10635194
Author(s) / Creator(s):
Publisher / Repository:
NA
Date Published:
Journal Name:
Geosciences
Volume:
15
Issue:
7
ISSN:
2076-3263
Page Range / eLocation ID:
266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Subduction zones represent the interface between Earth’s interior (crust and mantle) and exterior (atmosphere and oceans), where carbon and other volatile elements are actively cycled between Earth reservoirs by plate tectonics. Helium is a sensitive tracer of volatile sources and can be used to deconvolute mantle and crustal sources in arcs; however it is not thought to be recycled into the mantle by subduction processes. In contrast, carbon is readily recycled, mostly in the form of carbon-rich sediments, and can thus be used to understand volatile delivery via subduction. Further, carbon is chemically-reactive and isotope fractionation can be used to determine the main processes controlling volatile movements within arc systems. Here, we report helium isotope and abundance data for 42 deeply-sourced fluid and gas samples from the Central Volcanic Zone (CVZ) and Southern Volcanic Zone (SVZ) of the Andean Convergent Margin (ACM). Data are used to assess the influence of subduction parameters (e.g., crustal thickness, subduction inputs, and convergence rate) on the composition of volatiles in surface volcanic fluid and gas emissions. He isotopes from the CVZ backarc range from 0.1 to 2.6 R A ( n = 23), with the highest values in the Puna and the lowest in the Sub-Andean foreland fold-and-thrust belt. Atmosphere-corrected He isotopes from the SVZ range from 0.7 to 5.0 R A ( n = 19). Taken together, these data reveal a clear southeastward increase in 3 He/ 4 He, with the highest values (in the SVZ) falling below the nominal range associated with pure upper mantle helium (8 ± 1 R A ), approaching the mean He isotope value for arc gases of (5.4 ± 1.9 R A ). Notably, the lowest values are found in the CVZ, suggesting more significant crustal inputs (i.e., assimilation of 4 He) to the helium budget. The crustal thickness in the CVZ (up to 70 km) is significantly larger than in the SVZ, where it is just ∼40 km. We suggest that crustal thickness exerts a primary control on the extent of fluid-crust interaction, as helium and other volatiles rise through the upper plate in the ACM. We also report carbon isotopes from ( n = 11) sites in the CVZ, where δ 13 C varies between −15.3‰ and −1.2‰ [vs. Vienna Pee Dee Belemnite (VPDB)] and CO 2 / 3 He values that vary by over two orders of magnitude (6.9 × 10 8 –1.7 × 10 11 ). In the SVZ, carbon isotope ratios are also reported from ( n = 13) sites and vary between −17.2‰ and −4.1‰. CO 2 / 3 He values vary by over four orders of magnitude (4.7 × 10 7 –1.7 × 10 12 ). Low δ 13 C and CO 2 / 3 He values are consistent with CO 2 removal (e.g., calcite precipitation and gas dissolution) in shallow hydrothermal systems. Carbon isotope fractionation modeling suggests that calcite precipitation occurs at temperatures coincident with the upper temperature limit for life (122°C), suggesting that biology may play a role in C-He systematics of arc-related volcanic fluid and gas emissions. 
    more » « less
  2. We present geochemical data from gas samples from ~1200 km of arc in the Central Volcanic Zone of the Andes (CVZA), the volcanic arc with the thickest (~70 km) continental crust globally. The primary goals of this study are to characterize and understand how magmatic gases interact with hydrothermal systems, assess the origins of the major gas species, and constrain gas emission rates. To this end, we use gas chemistry, isotope compositions of H, O, He, C, and S, and SO2 fluxes from the CVZA. Gas and isotope ratios (CO2/ST, CO2/CH4, H2O/ST, δ13C, δ34S, 3He/4He) vary dramatically as magmatic gases are progressively affected by hydrothermal processes, reflecting removal and crustal sequestration of reactive species (e.g., S) and addition of less reactive meteoric and crustal components (e.g., He). The observed variations are similar in magnitude to those expected during the magmatic reactivation of volcanoes with hydrothermal systems. Carbon and sulfur isotope compositions of the highest temperature emissions (97–408 ◦C) are typical of arc magmatic gases. Helium isotope compositions reach values similar to upper mantle in some volcanic gases indicating that transcustal magma systems are effective conduits for volatiles, even through very thick continental crust. However, He isotopes are highly sensitive to even low degrees of hydrothermal interaction and radiogenic overprinting. Previous work has significantly underestimated volatile fluxes from the CVZA; however, emission rates from this study also appear to be lower than typical arcs, which may be related to crustal thickness. 
    more » « less
  3. Subduction transports volatiles between Earth’s mantle, crust, and atmosphere, ultimately creating a habitable Earth. We use isotopes to track carbon from subduction to outgassing along the Aleutian-Alaska Arc. We find substantial along-strike variations in the isotopic composition of volcanic gases, explained by different recycling efficiencies of subducting carbon to the atmosphere via arc volcanism and modulated by subduction character. Fast and cool subduction facilitates recycling of ~43 to 61% sediment-derived organic carbon to the atmosphere through degassing of central Aleutian volcanoes, while slow and warm subduction favors forearc sediment removal, leading to recycling of ~6 to 9% altered oceanic crust carbon to the atmosphere through degassing of western Aleutian volcanoes. These results indicate that less carbon is returned to the deep mantle than previously thought and that subducting organic carbon is not a reliable atmospheric carbon sink over subduction time scales. 
    more » « less
  4. This chapter discusses how radiogenic and stable isotopes can be used in the study of metallic mineral deposits. Although the chapter is mostly focused on the radiogenic (Pb, Os) and heavy stable (Fe, Cu, Zn) isotopes of metallic elements, we complement the discussion highlighting also the power of stable isotopes of light elements, which are major to significant components of hydrothermal fluids and rocks (e.g., H, B, C, N, O, S), as well as of radiogenic isotopes of elements (Sr, Nd, Hf ) that are useful in tracing fluid/magma sources and their interaction with the host rocks. In the first part of this chapter we discuss general aspects of isotopes clarifying the differences between stable non-radiogenic and stable radiogenic isotopes and, consequently, their different applicability to metallogenic studies. Due to their properties, stable non-radiogenic isotopes record mass-dependent fractionation that occur in many reactions associated with the formation of mineral deposits. Mass-dependent fractionation of stable non-radiogenic isotopes occurs both under equilibrium and non-equilibrium (kinetic) conditions of the reactions leading to ore mineral deposition and is controlled by various physico-chemical parameters, like, among the principal ones, temperature, oxygen fugacity, and biological activity. Therefore, stable non-radiogenic isotopes can inform us about the physico-chemical and, eventually, biological processes that control ore mineral deposition and also on the sources of some metals (e.g., transition metal isotopes of elements like Fe, Cu, Zn) or of the fluids (e.g., H, C, O, N, S isotopes) and even of metal ligands (e.g., S, Cl). We conclude the first part of the chapter providing some hints on the strategy of sampling and on the instrumentation related to isotopic studies. In the second part we discuss radioactive-radiogenic isotope systems and their applications in metallogenic studies of metallic mineral deposits. Stable radiogenic isotopes are characterized by relative variations that are controlled, in each geological system, by the addition of a radiogenic component of an isotope, derived from the decay of a radioactive parent, to the same radiogenic isotope already present in the Earth since its formation  4.55 Gyr ago. This relative variation is usually expressed as the ratio of a radiogenic isotope of an element to a non-radiogenic isotope of the same element. The ratio of these two isotopes has increased since the Earth formation and the magnitude of its variations depends on the radioactive/ radiogenic isotope ratios in different geological systems and on the time elapsed since the system has formed. The Earth is  4.55 Gyr old and has evolved from an initially homogeneous isotopic composition to reservoirs (e.g., mantle, crust) and crustal rocks with very variable radioactive/radiogenic isotope ratios due to magmatic, metamorphic, weathering, atmospheric and biologic processes, among others. This has resulted in extremely large variations of radiogenic isotopes in rocks and reservoirs of the Earth which can track various geological processes. In ore geology, stable radiogenic isotopes are best suited for tracing metal (e.g., Pb, Os) sources from different rocks and reservoirs (e.g., mantle, upper crust, lower crust), fluid-rock interactions (i.e., the hydrothermal plumbing system), or magma-host rock interactions (e.g., host rock assimilation by magmas associated with magmatic-hydrothermal deposits). Radioactive-radiogenic isotope systems allow us to determine also absolute ages of suitable minerals that are found in mineral deposits. This is an essential information in metallogeny that allows us to link the formation of a mineral deposit to a specific geological process and/or to specific periods of the Earth’s history. We discuss various dating methods that are extensively applied to date mineral deposits. These methods can be subdivided into those that allow a direct dating of ore minerals (e.g., RedOs dating of molybdenite, UdPb dating of cassiterite) and those that allow dating of minerals that are demonstrably related with the mineralization (e.g., UdPb dating of zircon from magmatic rocks associated with magmatic-hydrothermal deposits; Ar/Ar dating of K-bearing minerals resulting from alteration associated with various types of mineral deposits). We discuss pros and cons of using these various methods and also mention methods that are less used (because potentially less accurate and precise), but sometimes represent the only possibility to provide an age to deposit types that are notoriously difficult to date (e.g., MVT and Carlin-type deposits). We highlight the power of both stable radiogenic and non-radiogenic isotopes in unravelling the genesis of metallic mineral deposits through a series of conceptual and real examples applied to a broad range of mineral deposit types such as porphyry systems (i.e., porphyry deposits, high- and intermediate-sulfidation epithermal deposits, skarn, carbonate replacement deposits, sediment-hosted Au deposits), low-sulfidation epithermal deposits, IOCG deposits, ortho-magmatic deposits, volcanic-hosted massive sulfide deposits (VHMS), sediment-hosted deposits (stratiform copper, MVT), and supergene deposits. In the third part of the chapter, we discuss the use of transition metal stable non-radiogenic isotopes to mineral deposits. Although in its infancy, the application of transition metal isotopes to mineral deposit investigation is quickly growing because these isotopes allow us to address different aspects of the formation of mineral deposits compared to radiogenic isotopes. In particular, isotopes of transition metals (like stable isotopes of light elements) undergo mass-dependent fractionation processes that may be associated with different types of equilibrium and non-equilibrium chemical, physical and biological reactions occurring during the formation of mineral deposits. We focus on the applications of the isotopes of Cu, Fe and Zn to various deposit types, because isotopes of these transition metals are those that have been most extensively used in mineral deposit studies. Mass-independent fractionation may also occur for isotopes of some elements and could be a developing field that has not yet been extensively explored in the study of mineral deposits. 
    more » « less
  5. With the past decades of diamond inclusion research, it is now well established that the mantle-derived diamonds are originated either from the lithospheric mantle or sublithospheric mantle. The lithospheric diamonds can be further divided into mainly the peridotitic and eclogitic suites, which can be distinguished based on their inclusion chemistry, carbon, and nitrogen isotopic compositions (1, 2). The parental lithology of sublithospheric diamonds is less well established, partly due to their much lower occurrence relative to the lithospheric diamonds. But there has been growing isotopic evidence for the involvement of subducted materials in the source region of sublithospheric diamonds, such as carbon, boron, oxygen, and iron (3–6). Precipitation of diamonds in the Earth’s mantle has been thought to require the presence of a fluid phase. Being C-O-H, saline, carbonatitic, silicic, or metallic in composition, these fluids were released upon dehydration or partial melting of the parental lithology and migrate through the mantle until they reach diamond saturation point due to either the change in pressure-temperature, or redox conditions. Understanding the parental lithology and fluid composition of different diamonds has primarily relied on their carbon and nitrogen isotope compositions and major/trace element compositions of mineral/fluid inclusions. These tools have been shown to be powerful in many cases but each could have their own disadvantages. Nitrogen isotopes, for example, are less applicable to sublithospheric diamonds due to their low N concentration. Trace element compositions, on the other hand, can be easily manipulated by small mass fractions of low degree-melt that are enriched in incompatible elements. Understanding the diamond-forming fluids and their parental lithology require new tools that can provide a different perspective than the ones discussed above. In this presentation, we show recent developments in adapting Fe, Mg, and K isotope systems to diamond inclusion studies for a better understanding of their formation. These so-called “non-traditional” stable isotope systems were typically developed for large rocks that are not limited by sample amount. In order to adapt them to mineral inclusions tens to hundreds of micrometers in size, we’ve developed dedicated procedures to: 1) clean the diamond surface to remove contamination before extracting individual inclusions; 2) scale down the columns used for chemical purification to minimize blanks; and 3) improving sensitivity on the mass spectrometer to analyze small samples. With a Nu Plasma II at the Carnegie Institution for Science, we have shown to be able to analyze inclusion samples containing as little as 200 ng of Fe (6). With an upgraded Nu Plasma Sapphire at UCLA that is equipped with a collision cell, we are now able to analyze samples with >25 ng Fe. The same strategy has now been expanded to Mg and K isotope systems, for which a low sample limit of 25 ng and 300 ng has been achieved. With examples of Fe and Mg isotopic compositions of ferropericlase in sublithospheric diamond and K isotopic composition of fluid inclusions in fibrous diamonds, we show how isotopic compositions of major elements of mineral/fluid inclusions in diamond bring us new perspectives on their origin. Our tests show promising results to extend existing Mg and Fe protocols to silicate minerals and potentially applying similar strategies to silicon, calcium, and barium isotopes in the future. 
    more » « less