skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 11, 2026

Title: SAFE Passage to Social and Academic Support: First Year STEM Identity and Belonging Interventions for Under-resourced Students
Institutions of higher education continue to grapple with the challenges associated with increasing access to STEM learning and STEM majors for resource-limited students. Longstanding differences among well and under-resourced student groups with respect to STEM course enrollment, STEM major retention and persistence, and research opportunities persist despite decades of research on interventions. This article reports on outcomes of a cohort-based, multi-pronged S-STEM scholarship program at a small liberal arts institution for Pell-eligible first-year students that focuses on reducing college transition anxiety; building peer and mentor networks in STEM; providing gateway science course cohort learning; and layering multiple levels of advising and experiential learning. Results suggest that student participants enroll in more STEM courses, demonstrate lower rates of attrition, participate in experiential learning opportunities at much higher rates, and exhibit higher rates of STEM identity, identification as a scientist, and a sense of belonging in science than students in reference and/or control groups. Using mixed-methods data from surveys and focus groups, key components of program success are identified and discussed.  more » « less
Award ID(s):
2030650
PAR ID:
10635218
Author(s) / Creator(s):
; ;
Publisher / Repository:
Institute for STEM Education and Research
Date Published:
Journal Name:
Journal of STEM Education: Innovations and Research
Volume:
25
Issue:
4
ISSN:
1557-5284
Page Range / eLocation ID:
20 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research-to-practice full paper describes a cohort-based undergraduate research program designed to improve STEM retention through structured mentoring and community building. Drawing on the Affinity Research Group (ARG) model, the program fosters faculty-student research collaboration and integrates faculty mentorship training, student-led peer mentoring, and structured interventions, such as research skills workshops and networking events. Each year, faculty from biology, chemistry, computer science, environmental science, and mathematics lead small-group research projects with recruited students who may participate for up to three years. Faculty and students receive ARG training to promote consistent mentoring practices. A credit-bearing, major-specific first-year orientation course supports recruitment and reinforces students’ scientific identity. Faculty also engage in professional development workshops to strengthen student-centered mentoring approaches. Data collection includes surveys, interviews, retention tracking, and weekly journaling to assess STEM identity, belonging, and skill development. External evaluators reviewed the faculty focus groups to assess mentoring effectiveness. Initial findings show strong faculty engagement with the ARG model, with many adopting adaptive mentoring strategies that enhance student support. Students report increased confidence and belonging within their disciplines. However, cross-disciplinary collaboration remains limited, highlighting the need for more intentional networking within the cohort. Students also emphasized the value of peer collaboration alongside faculty mentorship. These results suggest that undergraduate research can serve as a powerful tool for building community and supporting persistence in STEM. Ongoing efforts will focus on expanding networking opportunities, strengthening peer collaboration, and evaluating long-term impacts on student retention. 
    more » « less
  2. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is in year four of a five-year NSF S-STEM funded program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This program offered financial, academic, and professional support to three two-year cohorts of students and is in the final year of the third and final cohort of the currently funded grant cycle. The SEECRS project aimed to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Over the course of the program 39 individuals received scholarship support. The program supported scholarship recipients through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Key elements of the program are: a required two-credit course that emphasized STEM identity development, course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and paring of each scholar with a faculty mentor. This paper presents data from the first four years of the program including participant outcomes and feedback on their experiences. Results from project evaluation activities such as pre and post surveys, focus groups, exit interviews, and faculty surveys are also presented and analyzed to compare how gains reported by program participants regarding such attributes as their STEM identities and sense of belonging compare to responses from a control group of students who did not participate in the program. Preliminary identification of some program best practices will also be presented. 
    more » « less
  3. The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor withNew York City Public Schools (BOP-CCERS) seeks to integrate harbor restoration activities with science teachers inorder to provide their students with experiential learning through environmental impact in New York City with thevision that public school students in New York City can benefit from environmental science and experiential learningwork through authentic research, data collection, and experimentation. The purpose is to engage science teachers withexperiential learning opportunities in the New York Harbor that helps them create engaging lessons for their ownstudents. It was found that teachers responded most positively to workshops that included hands-on activities,specifically the oyster restoration station trainings, classroom oyster tank setups and activities with scientists. Teachersreported that the BOP-CCERS program prepared them to support student learning of the program content and scientificresearch activities. Students who engage in real-world science are more likely to see the relevance of science and seethemselves working toward a career pathway in STEM. 
    more » « less
  4. Building on prior studies that show a sense of belonging and community bolster student success, we developed a pilot program for computer engineering (CpE) and computer science (CS) undergraduates and their families that focused on building a sense of belonging and community supported by co-curricular and socioeconomic scaffolding. As a dually designated Hispanic-Serving Institution (HSI) and Asian American and Native American Pacific Islander-Serving Institution (AANAPISI) – two types of federally designated Minority-Serving Institutions (MSI) – with 55% of our undergraduates being first-generation students, we aimed to demonstrate the importance of these principles for underrepresented and first-generation students. Using a student cohort model (for each incoming group of students) and also providing supports to build community across cohorts as well as including students’ families in their college experiences, our program aimed to increase student satisfaction and academic success. We recruited two cohorts of nine incoming students each across two years, 2019 and 2020; 69% of participants were from underrepresented racial or minority groups and 33% were women. Each participant was awarded an annual scholarship and given co-curricular support including peer and faculty mentoring, a dedicated cohort space for studying and gathering, monthly co-curricular activities, enhanced tutoring, and summer bridge and orientation programs. Students’ families were also included in the orientation and semi-annual meetings. The program has resulted in students exceeding the retention rates of their comparison groups, which were undergraduates majoring in CpE and CS who entered college in the same semester as the cohorts; first- and second-year retention rates for participants were 83% (compared to 72%) and 67% (compared to 57%). The GPAs of participants were 0.35 points higher on average than the comparison group and, most notably, participants completed 50% more credits than their comparison groups, on average. In addition, 9 of the 18 scholars (all of the students who wanted to participate) engaged in summer research or internships. In combination, the cohort building, inclusion of families, financial literacy education and support, and formal and informal peer and faculty mentoring have correlated with increased academic success. The cohorts are finishing their programs in Spring 2023 and Spring 2024, but data up to this point already show increases in GPA, course completion, and retention and graduation rates, with three students having already graduated early, within three and a half years. The findings from this study are now being used to expand the successful parts of the program and inform university initiatives, with the PI serving on campus-wide STEM pipeline committee aiming to recruit, retain, and support more STEM students at the institution. 
    more » « less
  5. Previous research has shown that female and Hispanic students who are underrepresented in science, technology, engineering and mathematics (STEM) face more educational barriers than their non-Hispanic, male peers. However, little research has been conducted on the effects of intersectional identities in the STEM space. In an effort to bridge the gap in underrepresented students' experience, the PSEG Institute for Sustainability Studies organizes a paid, interdisciplinary, team-based, experiential learning and internship program called the Green Teams that occurs during 10 weeks of the summer. The Green Teams Program strives to provide undergraduate students from all backgrounds–academically, economically, and demographically–an opportunity to develop their abilities in STEM fields and prepare them to enter the professional world. Based upon a survey given post-internship, self-reported learning gains for all students were analyzed to determine if the program had a significantly greater impact on students who are from groups traditionally underrepresented in STEM in their STEM-related learning gains and their confidence in STEM disciplines. Through t-tests, a Principal Component Analysis (PCA), and a 2-way factorial Analysis of Variance (ANOVA), Hispanic and female participants were found to report significantly higher learning gains than their counterparts in multiple STEM areas from increased tolerance for obstacles to gains in self confidence. The results of the study suggest Hispanic and female students benefit from paid work experiences in STEM with diverse peers and intentional, supportive mentoring. This research on the Green Teams Program provides insight into how this approach positively impacts STEM education of individuals from traditionally underrepresented groups in STEM. The findings may help to further guide the development of the Green Teams Program and the adoption of paid, interdisciplinary, team-based, experiential learning and internship experiences in additional academic STEM settings. 
    more » « less