skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 30, 2024

Title: Fair Few-Shot Learning with Auxiliary Sets
Recently, there has been a growing interest in developing machine learning (ML) models that can promote fairness, i.e., eliminating biased predictions towards certain populations (e.g., individuals from a specific demographic group). Most existing works learn such models based on well-designed fairness constraints in optimization. Nevertheless, in many practical ML tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance. This is because existing fairness constraints are designed to restrict the prediction disparity among different sensitive groups, but with few samples, it becomes difficult to accurately measure the disparity, thus rendering ineffective fairness optimization. In this paper, we define the fairness-aware learning task with limited training samples as the fair few-shot learning problem. To deal with this problem, we devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks. To compensate for insufficient training samples, we propose an essential strategy to select and leverage an auxiliary set for each meta-test task. These auxiliary sets contain several labeled training samples that can enhance the model performance regarding fairness in meta-test tasks, thereby allowing for the transfer of learned useful fairness-oriented knowledge to meta-test tasks. Furthermore, we conduct extensive experiments on three real-world datasets to validate the superiority of our framework against the state-of-the-art baselines.  more » « less
Award ID(s):
2223769 2228534 2154962 2144209 2006844
NSF-PAR ID:
10498640
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOS Press
Date Published:
Journal Name:
26th European Conference on Artificial Intelligence
ISBN:
978-1-64368-436-9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The problem of few-shot graph classification targets at assigning class labels for graph samples, where only limited labeled graphs are provided for each class. To solve the problem brought by label scarcity, recent studies have proposed to adopt the prevalent few-shot learning framework to achieve fast adaptations to graph classes with limited labeled graphs. In particular, these studies typically propose to accumulate meta-knowledge across a large number of meta-training tasks, and then generalize such meta-knowledge to meta-test tasks sampled from a disjoint class set. Nevertheless, existing studies generally ignore the crucial task correlations among meta-training tasks and treat them independently. In fact, such task correlations can help promote the model generalization to meta-test tasks and result in better classification performance. On the other hand, it remains challenging to capture and utilize task correlations due to the complex components and interactions in meta-training tasks. To deal with this, we propose a novel few-shot graph classification framework FAITH to capture task correlations via learning a hierarchical task structure at different granularities. We further propose a task-specific classifier to incorporate the learned task correlations into the few-shot graph classification process. Moreover, we derive FAITH+, a variant of FAITH that can improve the sampling process for the hierarchical task structure. The extensive experiments on four prevalent graph datasets further demonstrate the superiority of FAITH and FAITH+ over other state-of-the-art baselines.

     
    more » « less
  2. Few-shot graph classification aims at predicting classes for graphs, given limited labeled graphs for each class. To tackle the bottleneck of label scarcity, recent works propose to incorporate few-shot learning frameworks for fast adaptations to graph classes with limited labeled graphs. Specifically, these works propose to accumulate meta-knowledge across diverse meta-training tasks, and then generalize such meta-knowledge to the target task with a disjoint label set. However, existing methods generally ignore task correlations among meta-training tasks while treating them independently. Nevertheless, such task correlations can advance the model generalization to the target task for better classification performance. On the other hand, it remains non-trivial to utilize task correlations due to the complex components in a large number of meta-training tasks. To deal with this, we propose a novel few-shot learning framework FAITH that captures task correlations via constructing a hierarchical task graph at different granularities. Then we further design a loss-based sampling strategy to select tasks with more correlated classes. Moreover, a task-specific classifier is proposed to utilize the learned task correlations for few-shot classification. Extensive experiments on four prevalent few-shot graph classification datasets demonstrate the superiority of FAITH over other state-of-the-art baselines. 
    more » « less
  3. Few-shot node classification aims at classifying nodes with limited labeled nodes as references. Recent few-shot node classification methods typically learn from classes with abundant labeled nodes (i.e., meta-training classes) and then generalize to classes with limited labeled nodes (i.e., meta-test classes). Nevertheless, on real-world graphs, it is usually difficult to obtain abundant labeled nodes for many classes. In practice, each meta-training class can only consist of several labeled nodes, known as the extremely weak supervision problem. In few-shot node classification, with extremely limited labeled nodes for meta-training, the generalization gap between meta-training and meta-test will become larger and thus lead to suboptimal performance. To tackle this issue, we study a novel problem of few-shot node classification with extremely weak supervision and propose a principled framework X-FNC under the prevalent meta-learning framework. Specifically, our goal is to accumulate meta-knowledge across different meta-training tasks with extremely weak supervision and generalize such knowledge to meta-test tasks. To address the challenges resulting from extremely scarce labeled nodes, we propose two essential modules to obtain pseudo-labeled nodes as extra references and effectively learn from extremely limited supervision information. We further conduct extensive experiments on four node classification datasets with extremely weak supervision to validate the superiority of our framework compared to the state-of-the-art baselines. 
    more » « less
  4. Knowledge graphs (KGs) are of great importance in various artificial intelligence systems, such as question answering, relation extraction, and recommendation. Nevertheless, most real-world KGs are highly incomplete, with many missing relations between entities. To discover new triples (i.e., head entity, relation, tail entity), many KG completion algorithms have been proposed in recent years. However, a vast majority of existing studies often require a large number of training triples for each relation, which contradicts the fact that the frequency distribution of relations in KGs often follows a long tail distribution, meaning a majority of relations have only very few triples. Meanwhile, since most existing large-scale KGs are constructed automatically by extracting information from crowd-sourcing data using heuristic algorithms, plenty of errors could be inevitably incorporated due to the lack of human verification, which greatly reduces the performance for KG completion. To tackle the aforementioned issues, in this paper, we study a novel problem of error-aware few-shot KG completion and present a principled KG completion framework REFORM. Specifically, we formulate the problem under the few-shot learning framework, and our goal is to accumulate meta-knowledge across different meta-tasks and generalize the accumulated knowledge to the meta-test task for error-aware few-shot KG completion. To address the associated challenges resulting from insufficient training samples and inevitable errors, we propose three essential modules neighbor encoder, cross-relation aggregation, and error mitigation in each meta-task. Extensive experiments on three widely used KG datasets demonstrate the superiority of the proposed framework REFORM over competitive baseline methods. 
    more » « less
  5. Node classification is of great importance among various graph mining tasks. In practice, real-world graphs generally follow the long-tail distribution, where a large number of classes only consist of limited labeled nodes. Although Graph Neural Networks (GNNs) have achieved significant improvements in node classification, their performance decreases substantially in such a few-shot scenario. The main reason can be attributed to the vast generalization gap between meta-training and meta-test due to the task variance caused by different node/class distributions in meta-tasks (i.e., node-level and class-level variance). Therefore, to effectively alleviate the impact of task variance, we propose a task-adaptive node classification framework under the few-shot learning setting. Specifically, we first accumulate meta-knowledge across classes with abundant labeled nodes. Then we transfer such knowledge to the classes with limited labeled nodes via our proposed task-adaptive modules. In particular, to accommodate the different node/class distributions among meta-tasks, we propose three essential modules to perform node-level, class-level, and task-level adaptations in each meta-task, respectively. In this way, our framework can conduct adaptations to different meta-tasks and thus advance the model generalization performance on meta-test tasks. Extensive experiments on four prevalent node classification datasets demonstrate the superiority of our framework over the state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/TENT https://github.com/SongW-SW/TENT. 
    more » « less