skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Half-Space Intersection Properties for Minimal Hypersurfaces
We prove ``half-space" intersection properties in three settings: the hemisphere, half-geodesic balls in space forms, and certain subsets of Gaussian space. For instance, any two embedded minimal hypersurfaces in the sphere must intersect in every closed hemisphere. Two approaches are developed: one using classifications of stable minimal hypersurfaces, and the second using conformal change and comparison geometry for $$\alpha$$-Bakry-\'{E}mery-Ricci curvature. Our methods yield the analogous intersection properties for free boundary minimal hypersurfaces in space form balls, even when the interior or boundary curvature may be negative. Finally, Colding and Minicozzi recently showed that any two embedded shrinkers of dimension $$n$$ must intersect in a large enough Euclidean ball of radius $R(n)$. We show that $$R(n) \leq 2 \sqrt{n}$$.  more » « less
Award ID(s):
2103265
PAR ID:
10635546
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
The Journal of Geometric Analysis
Volume:
35
Issue:
6
ISSN:
1050-6926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract For any smooth Riemannian metric on an $$(n+1)$$ ( n + 1 ) -dimensional compact manifold with boundary $$(M,\partial M)$$ ( M , ∂ M ) where $$3\le (n+1)\le 7$$ 3 ≤ ( n + 1 ) ≤ 7 , we establish general upper bounds for the Morse index of free boundary minimal hypersurfaces produced by min–max theory in the Almgren–Pitts setting. We apply our Morse index estimates to prove that for almost every (in the $$C^\infty $$ C ∞ Baire sense) Riemannan metric, the union of all compact, properly embedded free boundary minimal hypersurfaces is dense in M . If $$\partial M$$ ∂ M is further assumed to have a strictly mean convex point, we show the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces whose boundaries are non-empty. Our results prove a conjecture of Yau for generic metrics in the free boundary setting. 
    more » « less
  2. We prove that, for a generic set of smooth prescription functions h on a closed ambient manifold, there always exists a nontrivial, smooth, closed hypersurface of prescribed mean curvature h. The solution is either an embedded minimal hypersurface with integer multiplicity, or a non-minimal almost embedded hypersurface of multiplicity one. More precisely, we show that our previous min-max theory, developed for constant mean curvature hypersurfaces, can be extended to construct min-max prescribed mean curvature hypersurfaces for certain classes of prescription function, including a generic set of smooth functions, and all nonzero analytic functions. In particular we do not need to assume that h has a sign. 
    more » « less
  3. Abstract We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $$\mathbf {R}^4$$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $$\mathbf {R}^4$$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. 
    more » « less
  4. A classical theorem of A. D. Alexandrov says that a connected compact smooth hypersurface in Euclidean space with constant mean curvature must be a sphere. We give exposition to some results on symmetry properties of hypersurfaces with ordered mean curvature and associated variations of the Hopf Lemma. Some open problems will be discussed. 
    more » « less
  5. Abstract We obtain a comparison formula for integrals of mean curvatures of Riemannian hypersurfaces via Reilly’s identities. As applications, we derive several geometric inequalities for a convex hypersurface Γ \Gamma in a Cartan-Hadamard manifold M M . In particular, we show that the first mean curvature integral of a convex hypersurface γ \gamma nested inside Γ \Gamma cannot exceed that of Γ \Gamma , which leads to a sharp lower bound for the total first mean curvature of Γ \Gamma in terms of the volume it bounds in M M in dimension 3. This monotonicity property is extended to all mean curvature integrals when γ \gamma is parallel to Γ \Gamma , or M M has constant curvature. We also characterize hyperbolic balls as minimizers of the mean curvature integrals among balls with equal radii in Cartan-Hadamard manifolds. 
    more » « less