skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 12, 2026

Title: Taylor-Model Physics-Informed Neural Networks (PINNs) for Ordinary Differential Equations
We study the problem of learning neural network models for Ordinary Differential Equations (ODEs) with parametric uncertainties. Such neural network models capture the solution to the ODE over a given set of parameters, initial conditions, and range of times. Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for learning such models that combine data-driven deep learning with symbolic physics models in a principled manner. However, the accuracy of PINNs degrade when they are used to solve an entire family of initial value problems characterized by varying parameters and initial conditions. In this paper, we combine symbolic differentiation and Taylor series methods to propose a class of higher-order models for capturing the solutions to ODEs. These models combine neural networks and symbolic terms: they use higher order Lie derivatives and a Taylor series expansion obtained symbolically, with the remainder term modeled as a neural network. The key insight is that the remainder term can itself be modeled as a solution to a first-order ODE. We show how the use of these higher order PINNs can improve accuracy using interesting, but challenging ODE benchmarks. We also show that the resulting model can be quite useful for situations such as controlling uncertain physical systems modeled as ODEs.  more » « less
Award ID(s):
2422136 1836900
PAR ID:
10635561
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Pappas, George; Ravikumar, Pradeep; Seshia, Sanjit A
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Volume:
288
Page Range / eLocation ID:
621-642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The molten sand that is a mixture of calcia, magnesia, alumina and silicate, known as CMAS, is characterized by its high viscosity, density and surface tension. The unique properties of CMAS make it a challenging material to deal with in high-temperature applications, requiring innovative solutions and materials to prevent its buildup and damage to critical equipment. Here, we use multiphase many-body dissipative particle dynamics simulations to study the wetting dynamics of highly viscous molten CMAS droplets. The simulations are performed in three dimensions, with varying initial droplet sizes and equilibrium contact angles. We propose a parametric ordinary differential equation (ODE) that captures the spreading radius behaviour of the CMAS droplets. The ODE parameters are then identified based on the physics-informed neural network (PINN) framework. Subsequently, the closed-form dependency of parameter values found by the PINN on the initial radii and contact angles are given using symbolic regression. Finally, we employ Bayesian PINNs (B-PINNs) to assess and quantify the uncertainty associated with the discovered parameters. In brief, this study provides insight into spreading dynamics of CMAS droplets by fusing simple parametric ODE modelling and state-of-the-art machine-learning techniques. 
    more » « less
  2. It has been observed that residual networks can be viewed as the explicit Euler discretization of an Ordinary Differential Equation (ODE). This observation motivated the introduction of so-called Neural ODEs, which allow more general discretization schemes with adaptive time stepping. Here, we propose ANODEV2, which is an extension of this approach that allows evolution of the neural network parameters, in a coupled ODE-based formulation. The Neural ODE method introduced earlier is in fact a special case of this new framework. We present the formulation of ANODEV2, derive optimality conditions, and implement the coupled framework in PyTorch. We present empirical results using several different configurations of ANODEV2, testing them on multiple models on CIFAR-10. We report results showing that this coupled ODE-based framework is indeed trainable, and that it achieves higher accuracy, as compared to the baseline models as well as the recently-proposed Neural ODE approach. 
    more » « less
  3. Battery lifetime and reliability depend on accurate state-of-health (SOH) estimation, while complex degradation mechanisms and varying operating conditions strengthen this challenge. This study presents two physics-informed neural network (PINN) configurations, PINN-Parallel, and PINN-Series, designed to improve SOH prediction by combining an equivalent circuit model (ECM) with a long short-term memory (LSTM) network. PINN-Parallel process input data through parallel ECM and LSTM modules and combine their outputs for SOH estimation. On the other hand, the PINN-Series uses a sequential approach that feeds ECM-derived parameters into the LSTM network to supplement temporal data analysis with physics information. Both models utilize easily accessible voltage, current, and temperature data that match realistic battery monitoring constraints. Experimental evaluations show that PINN-Series outperforms the PINN-Parallel and the baseline LSTM model in accuracy and robustness. It also adapts well to different input conditions. This demonstrates that the simulated battery dynamic states from ECM increase the LSTM's ability to capture degradation patterns and improve the model's ability to explain complex battery behavior. However, the trade-off between the robustness and training efficiency of PINNs is also discussed. The research findings show the potential of PINN models (particularly the PINN-Series) in advancing battery management systems, but the required computational resources need to be considered. 
    more » « less
  4. In the past few years, approaches such as physics informed neural networks (PINNs) have been applied to a variety of applications that can be modeled by linear and nonlinear ordinary and partial differential equations. Specifically, this work builds on the application of PINNs to a SIRD (susceptible, infectious, recovered, and dead) compartmental model and enhances it to build new mathematicalmodels that incorporate transportation between populations and their impact on the dynamics of infectious diseases. Our work employs neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters. We show how these approaches are capable of predicting the behavior of a disease described by governing differential equations that include parameters and variables associated with the movement of the population between neighboring cities. We show that our model validates real data and also how such PINNs based methodspredict optimal parameters for given datasets. 
    more » « less
  5. This paper proposes a method to learn ap- proximations of missing Ordinary Differential Equations (ODEs) and states in physiological models where knowl- edge of the system’s relevant states and dynamics is in- complete. The proposed method augments known ODEs with neural networks (NN), then trains the hybrid ODE-NN model on a subset of available physiological measurements (i.e., states) to learn the NN parameters that approximate the unknown ODEs. Thus, this method can model an ap- proximation of the original partially specified system sub- ject to the constraints of known biophysics. This method also addresses the challenge of jointly estimating physio- logical states, NN parameters, and unknown initial condi- tions during training using recursive Bayesian estimation. We validate this method using two simulated physiolog- ical systems, where subsets of the ODEs are assumed to be unknown during the training and test processes. The proposed method almost perfectly tracks the ground truth in the case of a single missing ODE and state and performs well in other cases where more ODEs and states are missing. This performance is robust to input signal per- turbations and noisy measurements. A critical advantage of the proposed hybrid methodology over purely data-driven methods is the incorporation of the ODE structure in the model, which allows one to infer unobserved physiological states. The ability to flexibly approximate missing or inac- curate components in ODE models improves a significant modeling bottleneck without sacrificing interpretability. 
    more » « less