skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MACHINE LEARNING FOR PREDICTING THE DYNAMICS OF INFECTIOUS DISEASES DURING TRAVEL THROUGH PHYSICS INFORMED NEURAL NETWORKS
In the past few years, approaches such as physics informed neural networks (PINNs) have been applied to a variety of applications that can be modeled by linear and nonlinear ordinary and partial differential equations. Specifically, this work builds on the application of PINNs to a SIRD (susceptible, infectious, recovered, and dead) compartmental model and enhances it to build new mathematicalmodels that incorporate transportation between populations and their impact on the dynamics of infectious diseases. Our work employs neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters. We show how these approaches are capable of predicting the behavior of a disease described by governing differential equations that include parameters and variables associated with the movement of the population between neighboring cities. We show that our model validates real data and also how such PINNs based methodspredict optimal parameters for given datasets.  more » « less
Award ID(s):
2230117
PAR ID:
10478137
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
BEGELL HOUSE
Date Published:
Journal Name:
Journal of Machine Learning for Modeling and Computing
Volume:
4
Issue:
3
ISSN:
2689-3967
Page Range / eLocation ID:
17 to 35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, the dynamics of the spread of COVID-19 is considered in the presence of both human-to-human transmission as well as environment-to-human transmission. Specifically, we expand and modify traditional epidemiological model for COVID-19 by incorporating a compartment to study the dynamics of pathogen concentration in the environmental reservoir, for instance concentration of droplets in closed spaces. We perform a mathematical analysis for the model proposed including an endemic equilibrium analysis as well as a next-generation approach both of which help to derive the basic reproduction number. We also study the e˚cacy of wearing a facemask through this model. Another important contribution of this work is the introduction to physics informed deep learning methods (PINNs) to study the dynamics. We propose this as an alternative to traditional numerical methods for solving system of differential equations used to describe dynamics of infectious diseases. Our results show that the proposed PINNs approach is a reliable candidate for both solving such systems and for helping identify important parameters that control the disease dynamics. 
    more » « less
  2. Pappas, George; Ravikumar, Pradeep; Seshia, Sanjit A (Ed.)
    We study the problem of learning neural network models for Ordinary Differential Equations (ODEs) with parametric uncertainties. Such neural network models capture the solution to the ODE over a given set of parameters, initial conditions, and range of times. Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for learning such models that combine data-driven deep learning with symbolic physics models in a principled manner. However, the accuracy of PINNs degrade when they are used to solve an entire family of initial value problems characterized by varying parameters and initial conditions. In this paper, we combine symbolic differentiation and Taylor series methods to propose a class of higher-order models for capturing the solutions to ODEs. These models combine neural networks and symbolic terms: they use higher order Lie derivatives and a Taylor series expansion obtained symbolically, with the remainder term modeled as a neural network. The key insight is that the remainder term can itself be modeled as a solution to a first-order ODE. We show how the use of these higher order PINNs can improve accuracy using interesting, but challenging ODE benchmarks. We also show that the resulting model can be quite useful for situations such as controlling uncertain physical systems modeled as ODEs. 
    more » « less
  3. Accurate numerical and physical models play an important role in modeling the spread of infectious disease as well as informing policy decisions. Vaccination programs rely on the estimation of disease parameters from limited, error-prone reported data. Using physics-informed neural networks (PINNs) as universal function approximators of the susceptible-infected-recovered (SIR) compartmentalized differential equation model, we create a data-driven framework that uses reported data to estimate disease spread and approximate corresponding disease parameters. We apply this to datafrom a London boarding school, demonstrating the framework's ability to produce accurate disease and parameter estimations despite noisy data. However, real-world populations contain sub-populations, each exhibiting different levels of risk and activity. Thus, we expand our framework to model meta-populations of preferentially-mixed subgroups with various contact rates, introducing a new substitution to decrease the number of parameters. Optimal parameters are estimated throughPINNs which are then used in a negative gradient approach to calculate an optimal vaccine distribution plan for informed policy decisions. We also manipulate a new hyperparameter in the loss function of the PINNs network to expedite training. Together, our work creates a data-driven tool for future infectious disease vaccination efforts in heterogeneously mixed populations. 
    more » « less
  4. The integration of machine learning in power systems, particularly in stability and dynamics, addresses the challenges brought by the integration of renewable energies and distributed energy resources (DERs). Traditional methods for power system transient stability, involving solving differential equations with computational techniques, face limitations due to their time-consuming and computationally demanding nature. This paper introduces physics-informed Neural Networks (PINNs) as a promising solution for these challenges, especially in scenarios with limited data availability and the need for high computational speed. PINNs offer a novel approach for complex power systems by incorporating additional equations and adapting to various system scales, from a single bus to multi-bus networks. Our study presents the first comprehensive evaluation of physics-informed Neural Networks (PINNs) in the context of power system transient stability, addressing various grid complexities. Additionally, we introduce a novel approach for adjusting loss weights to improve the adaptability of PINNs to diverse systems. Our experimental findings reveal that PINNs can be efficiently scaled while maintaining high accuracy. Furthermore, these results suggest that PINNs significantly outperform the traditional ode45 method in terms of efficiency, especially as the system size increases, showcasing a progressive speed advantage over ode45. 
    more » « less
  5. Abstract Predicting the future contribution of the ice sheets to sea level rise over the next decades presents several challenges due to a poor understanding of critical boundary conditions, such as basal sliding. Traditional numerical models often rely on data assimilation methods to infer spatially variable friction coefficients by solving an inverse problem, given an empirical friction law. However, these approaches are not versatile, as they sometimes demand extensive code development efforts when integrating new physics into the model. Furthermore, this approach makes it difficult to handle sparse data effectively. To tackle these challenges, we use the Physics‐Informed Neural Networks (PINNs) to seamlessly integrate observational data and governing equations of ice flow into a unified loss function, facilitating the solution of both forward and inverse problems within the same framework. We illustrate the versatility of this approach by applying the framework to two‐dimensional problems on the Helheim Glacier in southeast Greenland. By systematically concealing one variable (e.g., ice speed, ice thickness, etc.), we demonstrate the ability of PINNs to accurately reconstruct hidden information. Furthermore, we extend this application to address a challenging mixed inversion problem. We show how PINNs are capable of inferring the basal friction coefficient while simultaneously filling gaps in the sparsely observed ice thickness. This unified framework offers a promising avenue to enhance the predictive capabilities of ice sheet models, reducing uncertainties, and advancing our understanding of poorly constrained physical processes. 
    more » « less