skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on April 25, 2026

Title: NightLight: Passively Mapping Nighttime Sidewalk Light Data for Improved Pedestrian Routing
Nighttime sidewalk illumination has a significant and unequal influence on where and whether pedestrians walk at night. Despite the importance of pedestrian lighting, there is currently no approach for measuring and communicating how humans experience nighttime sidewalk light levels at scale. We introduce NightLight, a new sensing approach that leverages the ubiquity of smartphones by re-appropriating the built-in light sensor—traditionally used to adapt screen brightness—to sense pedestrian nighttime lighting conditions. We validated our technique through in-lab and street-based evaluations characterizing performance across phone orientation, phone model, and varying light levels demonstrating the ability to aggregate and map pedestrian-oriented light levels with unaltered smartphones. Additionally, to examine the impact of light level data on pedestrian route choice, we conducted a qualitative user study with 13 participants using a standard map vs. one with pedestrian lighting data from NightLight. Our findings demonstrate that people changed their routes in preference of well-light routes during nighttime walking. Our work has implications for improving personalized navigation, understanding pedestrian route choice, and expanding passive urban sensing.  more » « less
Award ID(s):
2411222
PAR ID:
10635625
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400713941
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Location:
Yokohama Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Current free and subscription-based trip planners have heavily focused on providing available transit options to improve the first and last-mile connectivity to the destination. However, those trip planners may not truly be multimodal to vulnerable road users (VRU)s since those selected side walk routes may not be accessible or feasible for people with disability. Depending on the level of availability of digital twin of travelers behaviors and sidewalk inventory, providing the personalized suggestion about the sidewalk with route features coupled with transit service reliability could be useful and happier transit riders may boost public transit demand/funding and reduce rush hour congestion. In this paper, the adaptive trip planner considers the real-time impact of environment changes on pedestrian route choice preferences (e.g., fatigue, weather conditions, unexpected construction, road congestion) and tolerance level in response to transit service uncertainty. Side walk inventory is integrated in directed hypergraph on the General Transit Feed Specification to specify traveler utilities as weights on the hyperedge. A realistic assessment of the effect of the user-defined preferences on a traveler’s path choice is presented for a section of the Boston transit network, with schedule data from the Massachusetts Bay Transportation Authority. Different maximum utility values are presented as a function of varying traveler’s risk-tolerance levels. In response to unprecedented climate change, poverty, and inflation, this new trip planner can be adopted by state agencies to boost their existing public transit demand without extra efforts 
    more » « less
  2. Data on pedestrian infrastructure is essential for improving the mobility environment and for planning efficiency. Although governmental agencies are responsible for capturing data on pedestrian infrastructure mostly by field audits, most have not completed such audits. In recent years, virtual auditing based on street view imagery (SVI), specifically through geo-crowdsourcing platforms, offers a more inclusive approach to pedestrian movement planning, but concerns about the quality and reliability of opensource geospatial data pose barriers to use by governments. Limited research has compared opensource data in relation to traditional government approaches. In this study, we compare pedestrian infrastructure data from an opensource virtual sidewalk audit platform (Project Sidewalk) with government data. We focus on neighborhoods with diverse walkability and income levels in the city of Seattle, Washington and in DuPage County, Illinois. Our analysis shows that Project Sidewalk data can be a reliable alternative to government data for most pedestrian infrastructure features. The agreement for different features ranges from 75% for pedestrian signals to complete agreement (100%) for missing sidewalks. However, variations in measuring the severity of barriers challenges dataset comparisons. 
    more » « less
  3. With the rise of global temperature, many cities are suffering from more and more frequent extreme heat in hot summers. Quantitative information on the spatial distributions of urban heat has become more and more important for extreme heat mitigation and adaptation in cities. This study first investigated the fine-level heat hazard distributions at the sidewalk and building block level from the pedestrian perspective in Philadelphia, Pennsylvania. The urban microclimate modeling based on a high-resolution urban geometrical model was used to generate the 1m resolution outdoor heat hazard map in the study area. The sidewalk map was overlaid on the generated high-resolution heat hazard map to estimate the sidewalk level heat hazard. Based on the sidewalk level heat hazard map, this study further calculated the heat hazard level in the 400m walkshed along sidewalks for each building block. The building level hazard data were then aggregated at the census tract level to compare with the socioeconomic and racial/ethnic variables. The result shows that neighborhoods with higher proportion of African Americans have a higher heat hazard level in Philadelphia. This study would provide new insights for developing more thermally comfortable and pedestrian-friendly neighborhoods in the context of climate change. 
    more » « less
  4. Abstract This research presents an adaptive and personalized routing model that enables individuals with mobility impairments to save their route preferences to a mobility assistant platform. The proactive approach based on anticipated user need accommodates vulnerable road users' personalized optimum dynamic routing rather than a reactive approach passively awaiting input. Most currently available trip planners target the general public's use of simpler route options prioritized based on static road characteristics. These static normative approaches are only satisfactory when conditions of intermediate intersections in the network are consistent, a constant rate of change occurs per each change of the segment condition, and the same fixed routes are valid every day regardless of the user preference. In this study, the vulnerable road user mobility problem is modeled by accommodating personalized preferences changing by time, sidewalk segment traversability, and the interaction between sidewalk factors and weather conditions for each segment contributing to a path choice. The developed reinforcement learning solution presents a lower average cost of personalized, accessible, and optimal path choices in various trip scenarios and superior to traditional shortest path algorithms (e.g., Dijkstra) with static and dynamic extensions. 
    more » « less
  5. Outdoor heat stress is a growing problem in cities during hot weather. City planners and designers require more pedestrian-centered approaches to understand sidewalk microclimates. Radiation loading, as quantified by mean radiant temperature (TMRT), is a key factor driving poor thermal comfort. Street trees provide shade and consequently reduce pedestrian TMRT. However, placement of trees to optimize the cooling they provide is not yet well understood. We apply the newly-developed TUF-Pedestrian model to quantify the impacts of sidewalk tree coverage on pedestrian TMRT during summer for a lowrise neighbourhood in a midlatitude city. TUF-Pedestrian captures the detailed spatio-temporal variation of direct shading and directional longwave radiation loading on pedestrians resulting from tree shade. We conduct 190 multi-day simulations to assess a full range of sidewalk street tree coverages for five high heat exposure locations across four street orientations. We identify street directions that exhibit the largest TMRT reductions during the hottest periods of the day as a result of tree planting. Importantly, planting a shade tree on a street where none currently exist provides approximately 1.5–2 times as much radiative cooling to pedestrians as planting the same tree on a street where most of the sidewalk already benefits from tree shade. Thus, a relatively equal distribution of trees among sun-exposed pedestrian routes and sidewalks within a block or neighbourhood avoids mutual shading and therefore optimizes outdoor radiative heat reduction per tree during warm conditions. Ultimately, street tree planting should be a place-based decision and account for additional environmental and socio-political factors. 
    more » « less