skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Mapping pedestrian network level outdoor heat hazard distributions in Philadelphia
With the rise of global temperature, many cities are suffering from more and more frequent extreme heat in hot summers. Quantitative information on the spatial distributions of urban heat has become more and more important for extreme heat mitigation and adaptation in cities. This study first investigated the fine-level heat hazard distributions at the sidewalk and building block level from the pedestrian perspective in Philadelphia, Pennsylvania. The urban microclimate modeling based on a high-resolution urban geometrical model was used to generate the 1m resolution outdoor heat hazard map in the study area. The sidewalk map was overlaid on the generated high-resolution heat hazard map to estimate the sidewalk level heat hazard. Based on the sidewalk level heat hazard map, this study further calculated the heat hazard level in the 400m walkshed along sidewalks for each building block. The building level hazard data were then aggregated at the census tract level to compare with the socioeconomic and racial/ethnic variables. The result shows that neighborhoods with higher proportion of African Americans have a higher heat hazard level in Philadelphia. This study would provide new insights for developing more thermally comfortable and pedestrian-friendly neighborhoods in the context of climate change.  more » « less
Award ID(s):
2314709
PAR ID:
10597894
Author(s) / Creator(s):
Publisher / Repository:
SAGE
Date Published:
Journal Name:
Environment and Planning B: Urban Analytics and City Science
Volume:
52
Issue:
4
ISSN:
2399-8083
Page Range / eLocation ID:
899 to 912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many cities are experiencing more frequent extreme heat during hot summers. With the rise of global temperature, the thermal comfort in urban areas become even worse. Quantitative information of the spatial distributions of urban heat has become increasingly important for resilience and adaptation to climate change in cities. This study compares satellite-derived land surface temperature (LST) and urban microclimate modeling-based mean radiant temperature (Tmrt) for mapping the urban heat distributions in Philadelphia, Pennsylvania, USA. The LST was estimated based on Landsat 8 thermal imagery with a spatial resolution of around 100 m, while the Tmrt was simulated based on high resolution LiDAR and national aerial imagery program multispectral aerial imageries with a spatial resolution of 1 m. Result shows that both LST and Tmrt show a similar general pattern of the urban heat across the study area, while the Tmrt presents much more details of the heat variations street by street and neighborhood by neighborhood. The LST tends to have a stronger relationship with the Tmrt on building roofs, which are usually not the place for human activities. This studyprovides evidence for choosing more appropriate metrics in urban heat-related studies. 
    more » « less
  2. Abstract Here we use remotely sensed land surface temperature measurements to explore the distribution of the United States’ urban heating burden, both at high resolution (within cities or counties) and at scale (across the whole contiguous United States). While a rich literature has documented neighborhood‐level disparities in urban heat exposures in individual cities, data constraints have precluded comparisons across locations. Here, drawing on urban temperature anomalies during extreme summer surface temperature events from all 1,056 US counties with more than 10 developed census tracts, we find that the poorest tracts (and those with lowest average education levels) within a county are significantly hotter than the richest (and more educated) neighborhoods for 76% of these counties (54% for education); we also find that neighborhoods with higher Black, Hispanic, and Asian population shares are hotter than the more White, non‐Hispanic areas in each county. This holds in counties with both large and small spreads in these population shares, and for 71% of all counties the significant racial urban heat disparities persist even when adjusting for income. Although individual locations have different histories that have contributed to race‐ and class‐based geographies, we find that the physical features of the urban environments driving these surface heat exposure gradients are fairly uniform across the country. Systematically, the disproportionate heat surface exposures faced by minority communities are due to more built‐up neighborhoods, less vegetation, and—to a lesser extent—higher population density. 
    more » « less
  3. Outdoor heat stress is a growing problem in cities during hot weather. City planners and designers require more pedestrian-centered approaches to understand sidewalk microclimates. Radiation loading, as quantified by mean radiant temperature (TMRT), is a key factor driving poor thermal comfort. Street trees provide shade and consequently reduce pedestrian TMRT. However, placement of trees to optimize the cooling they provide is not yet well understood. We apply the newly-developed TUF-Pedestrian model to quantify the impacts of sidewalk tree coverage on pedestrian TMRT during summer for a lowrise neighbourhood in a midlatitude city. TUF-Pedestrian captures the detailed spatio-temporal variation of direct shading and directional longwave radiation loading on pedestrians resulting from tree shade. We conduct 190 multi-day simulations to assess a full range of sidewalk street tree coverages for five high heat exposure locations across four street orientations. We identify street directions that exhibit the largest TMRT reductions during the hottest periods of the day as a result of tree planting. Importantly, planting a shade tree on a street where none currently exist provides approximately 1.5–2 times as much radiative cooling to pedestrians as planting the same tree on a street where most of the sidewalk already benefits from tree shade. Thus, a relatively equal distribution of trees among sun-exposed pedestrian routes and sidewalks within a block or neighbourhood avoids mutual shading and therefore optimizes outdoor radiative heat reduction per tree during warm conditions. Ultimately, street tree planting should be a place-based decision and account for additional environmental and socio-political factors. 
    more » « less
  4. Abstract Many cities are experiencing increases in extreme heat because of global temperature rise combined with the urban heat island effect. The heterogeneity of urban morphology also leads to fine-scale variability in potential for heat exposure. Yet, how this rise in temperature and local variability together impacts urban residents differently at exposure-relevant scales is still not clear. Here we map the Universal Thermal Climate Index, a more complete indicator of human heat stress at an unprecedentedly fine spatial resolution (1 m), for 14 major cities in the United States using urban microclimate modeling. We examined the different heat exposure levels across different socioeconomic and racial/ethnic groups in these cities, finding that income level is most consistently associated with heat stress. We further conducted scenario simulations for a hypothetical 1 °C increase of air temperature in all cities. Results show that a 1 °C increase would have a substantial impact on human heat stress, with impacts that differ across cities. The results of this study can help us better evaluate the impact of extreme heat on urban residents at decision-relevant scales. 
    more » « less
  5. Nighttime sidewalk illumination has a significant and unequal influence on where and whether pedestrians walk at night. Despite the importance of pedestrian lighting, there is currently no approach for measuring and communicating how humans experience nighttime sidewalk light levels at scale. We introduce NightLight, a new sensing approach that leverages the ubiquity of smartphones by re-appropriating the built-in light sensor—traditionally used to adapt screen brightness—to sense pedestrian nighttime lighting conditions. We validated our technique through in-lab and street-based evaluations characterizing performance across phone orientation, phone model, and varying light levels demonstrating the ability to aggregate and map pedestrian-oriented light levels with unaltered smartphones. Additionally, to examine the impact of light level data on pedestrian route choice, we conducted a qualitative user study with 13 participants using a standard map vs. one with pedestrian lighting data from NightLight. Our findings demonstrate that people changed their routes in preference of well-light routes during nighttime walking. Our work has implications for improving personalized navigation, understanding pedestrian route choice, and expanding passive urban sensing. 
    more » « less