skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transport effects in non-Hermitian nonreciprocal systems: General approach
In this paper, we present a unifying analytical framework for identifying conditions for transport effects such as reflectionless and transparent transport, lasing, and coherent perfect absorption in non-Hermitian nonreciprocal systems using a generalized transfer matrix method. This provides a universal approach to studying the transport of tight-binding platforms, including higher-dimensional models and those with an internal degree of freedom going beyond the previously studied case of one-dimensional chains with nearest-neighbor couplings. For a specific class of tight-binding models, the relevant transport conditions and their signatures of non-Hermitian, nonreciprocal, and topological behavior are analytically tractable from a general perspective. We investigate this class and illustrate our formalism in a paradigmatic ladder model where the system’s parameters can be tuned to adjust the transport effect and topological phases.  more » « less
Award ID(s):
2012172
PAR ID:
10635644
Author(s) / Creator(s):
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review B
Volume:
107
Issue:
12
ISSN:
2469-9950
Page Range / eLocation ID:
125155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Based on a general transport theory for nonreciprocal non-Hermitian systems and a topological model that encompasses a wide range of previously studied examples, we (i) provide conditions for effects such as reflectionless and transparent transport, lasing, and coherent perfect absorption, (ii) identify which effects are compatible and linked with each other, and (iii) determine by which levers they can be tuned independently. For instance, the directed amplification inherent in the non-Hermitian skin effect does not enter the spectral conditions for reflectionless transport, lasing, or coherent perfect absorption, but allows to adjust the transparency of the system. In addition, in the topological model the conditions for reflectionless transport depend on the topological phase, but those for coherent perfect absorption do not. This then allows us to establish a number of distinct transport signatures of non-Hermitian, nonreciprocal, and topological behavior, in particular (1) reflectionless transport in a direction that depends on the topological phase, (2) invisibility coinciding with the skin-effect phase transition of topological edge states, and (3) coherent perfect absorption in a system that is transparent when probed from one side. 
    more » « less
  2. Abstract An extensive number of the eigenstates can become exponentially localized at one boundary of nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has been studied mostly in tight-binding lattices. To extend the skin effect to continues systems beyond 1D, we introduce a quadratic imaginary vector potential in the continuous two dimensional Schrödinger equation. We find that inseparable eigenfunctions for separable nonreciprocal Hamiltonians appear under infinite boundary conditions. Introducing boundaries destroy them and hence they can only be used as quasi-stationary states in practice. We show that all eigenstates can be clustered at the point where the imaginary vector potential is minimum in a confined system. 
    more » « less
  3. Synthetic photonic materials created by engineering the profile of refractive index or gain/loss distribution, such as negative-index metamaterials or parity-time-symmetric structures, can exhibit electric and magnetic properties that cannot be found in natural materials, allowing for photonic devices with unprecedented functionalities. In this article, we discuss two directions along this line—non-Hermitian photonics and topological photonics—and their applications in nonreciprocal light transport when nonlinearities are introduced. Both types of synthetic structures have been demonstrated in systems involving judicious arrangement of optical elements, such as optical waveguides and resonators. They can exhibit a transition between different phases by adjusting certain parameters, such as the distribution of refractive index, loss, or gain. The unique features of such synthetic structures help realize nonreciprocal optical devices with high contrast, low operation threshold, and broad bandwidth. They provide promising opportunities to realize nonreciprocal structures for wave transport. 
    more » « less
  4. The non-Hermitian skin effect (NHSE) is a well-known phenomenon in open topological systems that causes a large number of eigenstates to become localized at the boundary. Although many aspects of its theory have been investigated in linear systems, this phenomenon remains novel in nonlinear models. In the first step of this paper, we look at the conditions for the presence of quasi-skin modes in a semi-infinite, one-dimensional, nonlinear, nonreciprocal lattice. In the following phase, we explore the survival time of the quasi-skin mode in a finite nonlinear lattice with open edges. We study the dependency of the survival time on the system’s parameters and demonstrate how the nonreciprocity of the system affects the survival time. This study introduces a method for achieving a stable localized state in a nonlinear finite lattice. 
    more » « less
  5. In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons and fermions. Here we show how this fundamental concept can be applied to connect bosonic and fermionic lattice models in the realm of condensed matter physics, e.g., to identify a variety of (bosonic) phonon and magnon lattice models which admit topologically nontrivial free fermion models as superpartners. At the single-particle level, the bosonic and the fermionic models that are generated by the SUSY are isospectral except for zero modes, such as flat bands, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences and discuss further ramifications such as the definition of supersymmetric topological invariants for generic bosonic systems. Notably, a Hermitian form of the supercharge operator, the generator of the SUSY, can itself be interpreted as a hopping Hamiltonian on a bipartite lattice. This allows us to identify a wide class of interconnected lattices whose tight-binding Hamiltonians are superpartners of one another or can be derived via squaring or square-rooting their energy spectra all the while preserving band topology features. We introduce a five-fold way symmetry classification scheme of these SUSY lattice correspondences, including cases with a non-zero Witten index, based on a topological classification of the underlying Hermitian supercharge operator. These concepts are illustrated for various explicit examples including frustrated magnets, Kitaev spin liquids, and topological superconductors. 
    more » « less