In a recent publication we studied the decay rate of primordial black holes perceiving the dark dimension, an innovative five-dimensional (5D) scenario that has a compact space with characteristic length scale in the micron range. We demonstrated that the rate of Hawking radiation of 5D black holes slows down compared to 4D black holes of the same mass. Armed with our findings we showed that for a species scale of , an all-dark-matter interpretation in terms of primordial black holes should be feasible for black hole masses in the range . As a natural outgrowth of our recent study, herein we calculate the Hawking evaporation of near-extremal 5D black holes. Using generic entropy arguments we demonstrate that Hawking evaporation of higher-dimensional near-extremal black holes proceeds at a slower rate than the corresponding Schwarzschild black holes of the same mass. Assisted by this result we show that if there were 5D primordial near-extremal black holes in nature, then a primordial black hole all-dark-matter interpretation would be possible in the mass range , where is a parameter that controls the difference between mass and charge of the associated near-extremal black hole. Published by the American Physical Society2024
more »
« less
Tidal heating as a discriminator for horizons in equatorial eccentric extreme mass ratio inspirals
Tidal heating in a binary black hole system is driven by the absorption of energy and angular momentum by the black hole’s horizon. Previous works have shown that this phenomenon becomes particularly significant during the late stages of an extreme mass ratio inspiral (EMRI) into a rapidly spinning massive black hole, a key focus for future low-frequency gravitational-wave observations by (for instance) the Laser Interferometer Space Antenna mission. Past analyses have largely focused on quasicircular inspiral geometry, with some of the most detailed studies looking at equatorial cases. Though useful for illustrating the physical principles, this limit is not very realistic astrophysically, since the population of EMRI events is expected to arise from compact objects scattered onto relativistic orbits in galactic centers through many-body events. In this work, we extend those results by studying the importance of tidal heating in equatorial EMRIs with generic eccentricities. Our results suggest that accurate modeling of tidal heating is crucial to prevent significant dephasing and systematic errors in EMRI parameter estimation. We examine a phenomenological model for EMRIs around exotic compact objects by parametrizing deviations from the black hole (BH) picture in terms of the fraction of radiation absorbed compared to the BH case. Based on a mismatch calculation, we find that reflectivities as small as are distinguishable from the BH case, irrespective of the value of the eccentricity. We stress, however, that this finding should be corroborated by future parameter estimation studies. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2110384
- PAR ID:
- 10635723
- Publisher / Repository:
- American Physical Societyx
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 2
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the first evidence for the transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be , which is noticeably smaller than expected. We also set upper limits on transitions of , and , at the 90% confidence level. These results are obtained with a data sample collected near the resonance with the Belle detector at the KEKB asymmetric-energy collider. Published by the American Physical Society2024more » « less
-
The asymmetry and branching fraction of the Cabibbo-Kobayashi-Maskawa-suppressed decay are precisely measured relative to the favored decay using a sample of proton-proton collision data corresponding to an integrated luminosity of recorded at a center-of-mass energy of 13 TeV during 2016–2018. The results of the asymmetry difference and branching fraction ratio are , , where the first uncertainties are statistical and the second are systematic. A combination with previous LHCb results based on data collected at 7 and 8 TeV in 2011 and 2012 yields and . The combined value deviates from zero by 3.2 standard deviations, providing the first evidence for direct violation in the amplitudes of beauty decays to charmonium final states. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
We measure the branching fraction of the decay using data collected with the Belle II detector at the SuperKEKB collider. The data contain meson pairs produced in energy-asymmetric collisions at the resonance. The measured branching fraction , where the first uncertainty is statistical and the second is systematic, is more precise than previous results and constitutes the first observation of the decay with a significance of 6.5 standard deviations. Published by the American Physical Society2025more » « less
-
Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around , using gravitational wave observations of compact binary mergers with next-generation ground-based detectors. While high metallicity may not allow for the formation of first-generation black holes on the “far side” beyond the gap, metal-poor environments containing population III stars could lead to such heavy black hole mergers. We show that, even in the presence of contamination from other merger channels, next-generation detectors will measure the location of the upper end of the mass gap with a relative precision close to at 90% CL, where is the number of detected mergers with both members beyond the gap. These future observations could reduce current uncertainties in nuclear and astrophysical processes controlling the location of the gap. Published by the American Physical Society2024more » « less
An official website of the United States government

