Abstract One of the major challenges in the development of micro-combustors is heat losses that result in flame quenching, and reduced combustion efficiency and performance. In this work, a novel thermal barrier coating (TBC) using hexagonal boron nitride (h-BN) nanosheets as building blocks was developed and applied to a Swiss roll micro-combustor for determining its heat losses with increased temperatures inside the combustor that contributes to improved performance. It was found that by using the h-BN TBC, the combustion temperature of the micro-combustor increased from 850 K to 970 K under the same thermal loading and operational conditions. This remarkable temperature increase using the BN TBC originated from its low cross-plane thermal conductivity of 0.4 W m−1 K−1to mitigate the heat loss from the micro-combustor plates. Such a low thermal conductivity in the h-BN TBC is attributed to its interfacial resistance between the nanosheets. The development of h-BN TBC provides an effective approach to improve thermal management for performance improvements of gas turbine engines, rocket engines, and all various kinds of micro-combustors.
more »
« less
This content will become publicly available on February 1, 2026
Enhanced Thermal Management in Microelectronics Packaging With 2D h‐BN Nanocomposite Underfills
ABSTRACT The quest for faster and more densely packed microelectronic circuits has necessitated significant advancements in thermal management and encapsulant manufacturing technologies. This pursuit has driven the development of innovative methods to enhance heat flux and thermal transfer in microelectronics packaging. A critical issue is the thermal stress induced by the coefficient of thermal expansion (CTE) mismatch between the chip and the substrate, threatening the chip's mechanical integrity and lifespan. To address this challenge, there is a growing emphasis on using underfills to improve thermal transfer and heat dissipation. The current study focuses on using hexagonal boron nitride (h‐BN) nanofillers for robust thermal support in microelectronics packaging. This study deploys epoxy adhesives to integrate nanofillers, where precise dispersion is crucial for optimizing thermal and mechanical properties. Findings show 1500‐ and 500‐nm h‐BN enhance axial thermal conductivity and diffusivity linearly with filler content, while the 70‐nm h‐BN plateaus at 3% volume. The 70‐nm h‐BN demonstrates superior radial thermal performance.
more »
« less
- Award ID(s):
- 2435570
- PAR ID:
- 10636178
- Publisher / Repository:
- Nano Select
- Date Published:
- Journal Name:
- Nano Select
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2688-4011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hexagonal boron nitride (h‐BN) is a layered inorganic synthetic crystal exhibiting high temperature stability and high thermal conductivity. As a ceramic material it has been widely used for thermal management, heat shielding, lubrication, and as a filler material for structural composites. Recent scientific advances in isolating atomically thin monolayers from layered van der Waals crystals to study their unique properties has propelled research interest in mono/few layeredh‐BN as a wide bandgap insulating support for nanoscale electronics, tunnel barriers, communications, neutron detectors, optics, sensing, novel separations, quantum emission from defects, among others. Realizing these futuristic applications hinges on scalable cost‐effective high‐qualityh‐BN synthesis. Here, the authors review scalable approaches of high‐quality mono/multilayerh‐BN synthesis, discuss the challenges and opportunities for each method, and contextualize their relevance to emerging applications. Maintaining a stoichiometric balance B:N = 1 as the atoms incorporate into the growing layered crystal and maintaining stacking order between layers during multi‐layer synthesis emerge as some of the main challenges forh‐BN synthesis and the development of processes to address these aspects can inform and guide the synthesis of other layered materials with more than one constituent element. Finally, the authors contextualizeh‐BN synthesis efforts along with quality requirements for emerging applications via a technological roadmap.more » « less
-
Abstract Fire retardant coatings have been proven effective at reducing the heat release rate (HRR) of structural materials during burning; yet effective methods for increasing the ignition temperature and delay time prior to burning are rarely reported. Herein, a strong, fire‐resistant wood structural material is developed by combining a densification treatment with an anisotropic thermally conductive flame‐retardant coating of hexagonal boron nitride (h‐BN) nanosheets to produce BN‐densified wood. The thermal management properties created by the BN coating provide fast, in‐plane thermal diffusion, slowing the conduction of heat through the densified wood, which improves the material's ignition properties. Compared with densified wood without the BN coating, a 41 °C enhancement in ignition temperature (Tig), a twofold increase in ignition delay time (tig), and a 25% decrease in the maximum HRR of BN‐densified wood can be achieved. As a proof of concept for scalability, the pieces of the BN‐densified wood are fabricated with a length larger than 25 cm, width greater than 15 cm, and thickness more than 7 mm. The improved thermal management, fire resistance, mechanical strength, and scalable production of BN‐densified wood position it as a promising structural material for safe and energy‐efficient buildings.more » « less
-
Abstract Over the past few decades, microscale duct flow has been the key element for many applications, such as drug delivery and microelectronics cooling. To enhance the performance of such systems and to save more energy, looking for new ways to control the hydrodynamic and thermal characteristics of the microchannel flow has been of great interest lately. The aim of this research is to gain a better understanding of the flow physics within microchannels with microtextured walls. Therefore, a set of numerical study has been conducted on the combined effect of flow and heat transfer for spanwise rectangular trenches. The surface microstructures increase the wetting surface area, which is supposed to increase friction (skin drag). Recirculation produced inside the grooves, on the other hand, aids in increasing main flow slippage and lowering pressure drop along the microchannel. It is also worth noting that recirculation creates a negative pressure difference in the opposite direction of the flow (pressure drag). The geometrical parameters of the trenches have a significant impact on the trade-off between the drag reducing and drag increasing factors in textured microchannel flow, which is addressed in this research. Furthermore, the textures disrupt the thermal boundary layer, which can boost thermal transport through recirculation mixing. However, the stagnant fluid trapped within the grooves has weak convective heat transfer. So far, the results have been promising and a drag reduction of about 25% has been reported for wide trenches at low Reynolds numbers. Thermal transport enhancement is also possible for some tested geometries when the flow has not achieved the thermally fully development.more » « less
-
Boron nitride nanosheets, quantum dots, and dots: Synthesis, properties, and biomedical applicationsThis review examines three aspects of hexagonal boron nitride (h-BN) nanomaterials: properties, synthesis methods, and biomedical applications. We focus the scope of review on three types of h-BN nanostructures: boron nitride nanosheets (BNNSs, few-layered h-BN, larger than ∼100 nm in lateral dimensions), boron nitride quantum dots (BN QDs, smaller than ∼10 nm in all dimensions, with inherent excitation-dependent fluorescence), and boron nitride dots (BN dots, smaller than ∼10 nm in all dimensions, wide bandgap without noise fluorescence). The synthesis methods of BNNSs, BN QDs, and BN dots are summarized in top-down and bottom-up approaches. Future synthesis research should focus on the scalability and the quality of the products, which are essential for reproducible applications. Regarding biomedical applications, BNNSs were used as nanocarriers for drug delivery, mechanical reinforcements (bone tissue engineering), and antibacterial applications. BN QDs are still limited for non-specific bioimaging applications. BN dots are used for the small dimension to construct high-brightness probes (HBPs) for gene sequence detections inside cells. To differentiate from other two-dimensional materials, future applications should focus on using the unique properties of BN nanostructures, such as piezoelectricity, boron neutron capture therapy (BNCT), and their electrically insulating and optically transparent nature. Examples would be combining BNCT and chemo drug delivery using BNNSs, and using BN dots to form HBPs with enhanced fluorescence by preventing fluorescence quenching using electrically insulating BN dots.more » « less
An official website of the United States government
