skip to main content


Title: Investigating the Potential Drag Reduction and Thermal Transport Improvement in Textured Microchannels
Abstract

Over the past few decades, microscale duct flow has been the key element for many applications, such as drug delivery and microelectronics cooling. To enhance the performance of such systems and to save more energy, looking for new ways to control the hydrodynamic and thermal characteristics of the microchannel flow has been of great interest lately. The aim of this research is to gain a better understanding of the flow physics within microchannels with microtextured walls. Therefore, a set of numerical study has been conducted on the combined effect of flow and heat transfer for spanwise rectangular trenches. The surface microstructures increase the wetting surface area, which is supposed to increase friction (skin drag). Recirculation produced inside the grooves, on the other hand, aids in increasing main flow slippage and lowering pressure drop along the microchannel. It is also worth noting that recirculation creates a negative pressure difference in the opposite direction of the flow (pressure drag). The geometrical parameters of the trenches have a significant impact on the trade-off between the drag reducing and drag increasing factors in textured microchannel flow, which is addressed in this research. Furthermore, the textures disrupt the thermal boundary layer, which can boost thermal transport through recirculation mixing. However, the stagnant fluid trapped within the grooves has weak convective heat transfer. So far, the results have been promising and a drag reduction of about 25% has been reported for wide trenches at low Reynolds numbers. Thermal transport enhancement is also possible for some tested geometries when the flow has not achieved the thermally fully development.

 
more » « less
Award ID(s):
1705958
NSF-PAR ID:
10321250
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME 2021 Fluids Engineering Division Summer Meeting
Volume:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Impingement split flow liquid-cooled microchannel cold plates are one of several flow configurations used for single-phase liquid cooling. Split flow or top-in/side-exit (TISE) cold plates divide the flow into two branches thus resulting in halved or reduced flow rates and flow lengths, compared to traditional side-in /side-exit (SISE) or parallel flow cold plates. This has the effect of reducing the pressure drop because of the shorter flow length and lower flow rate and increasing the heat transfer coefficient due to thermally developing as opposed to fully developed flow. It is also claimed that the impinging flow increases the heat transfer coefficient on the base plate in the region of impingement. Because of the downward impinging and turning flow, there are no exact analytical models for this flow configuration. Computational and experimental studies have been performed, but there are no useful compact analytical models in the literature that can be used to predict the performance of these impingement cold plates. Results are presented for novel physics-based laminar flow models for a TISE microchannel cold plate based on an equivalent parallel channel flow approach. We show that the new models accurately predict the thermal-hydraulic performance over a wide range of parameters.

     
    more » « less
  2. The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. Two flow motions are identified. The first is a spiral flow oscillation above the herringbone structures that advect heat and mass from the top plane to herringbone structures. The second is a flow recirculation in the grooves between the ridges that advect heat and mass from the area around the tips of the structures to their side walls and the bottom surfaces. These two basic flow motions couple together to form a complex transport mechanism. The results show that when advective heat and mass transfer takes effect at relatively large Reynolds and Schmidt numbers, the dependence of the total transfer rate on Schmidt number follows a power law, with the exponent being the same as that in the Dittus–Boelter equation for turbulent heat transfer. As the Reynolds number increases, the dependence of the total transfer rate on the Reynolds number also approaches a power law, and the exponent is close to that in the Dittus–Boelter equation.

     
    more » « less
  3. Abstract This paper shows how clusters of radiation-stabilized water droplets levitated in an upward flow of air and water vapor above a heated water surface can be modeled using Spalding's self-similarity theory of heat and mass transfer and Stefan flow. The model describes equilibrium droplet states, including stability conditions, as well as nonequilibrium (quasi-steady) transient evolution. Equilibrium states are shown to exist when Stefan-flow supersaturation, which has a quadratic-like variation with height above the water surface, and radiation-stabilized equilibrium supersaturation, which is nearly constant with height, are equal. The latter can be predicted by a fundamentally derived function of absorbed radiant flux (linear), droplet radius (linear if opaque), continuum thermal conductivity, and thermodynamic properties. In fact, all of the experimentally observed droplet behavior can be predicted using simple analytical results based on quasi-steady droplet energy and continuum transport. Unsteady droplet energy, Knudsen-layer transport, numerical solutions, and curve-fitting of numerical computations, as used previously in modeling this behavior, are not necessary. An interesting reversal of the usual effect of mass transfer on droplet drag in low-Re flow when levitated droplets are irradiated asymmetrically by significant infrared radiation is also postulated, which relates to the relative importance of normal (pressure) and tangential (shear stress) drag. This theory of radiation-augmented droplet evaporation, condensation, and relative motion in a moving gas has application to conditions in clouds, wherein droplets can experience either net radiative heating or cooling and fluctuating updrafts or downdrafts. 
    more » « less
  4. Although supercritical CO2 (sCO2) heat transfer has been employed in industrial process since the 1960s, the underlying transport phenomenon in high-flux microscale geometries, as could be employed in concentrating solar receivers, is poorly understood. To date, nearly all experimental studies and simulations of supercritical convective heat transfer have focused on large diameter vertical channel and tube bundle flows, which may differ dramatically from microscale supercritical convection. Computational studies have primarily employed Reynolds averaged (RANS) turbulence modeling approaches, which may not capture effects from the sharply varying property trends of supercritical fluids. In this study, large eddy simulation (LES) turbulence modeling techniques are employed to study heat transfer characteristics of sCO2 in microscale heat exchangers. The simulation geometry consists of a microchannel of 750×737 μm cross-section and 5 mm length, heated from all four sides. Simulation cases are evaluated at reduced pressure P_r = 1.1, mass flux G = 1000 kg/m^2-s, heat flux q'' = 1.7 − 8.9 W/cm^2 , and varying inlet temperature: 20 − 100℃. Computational results reveal thermal transport mechanisms specific to microscale sCO2 flows. Results have been compared with available supercritical convection correlations to identify the most applicable heat transfer models for engineering of microchannel sCO2 heat exchangers. 
    more » « less
  5. Abstract

    Forest canopies play a critical role in affecting momentum and scalar transfer. Although there have been recent advances in numerical simulations of turbulent flows and scalar transfer across plant canopies and the atmosphere interface, few models have incorporated all important physical and physiological processes in subcanopy layers. Here we describe and evaluate an advanced multiple‐layer canopy module (MCANOPY), which is developed based largely on the Community Land Model version 4.5 and then coupled with the Weather Research and Forecasting model with large‐eddy simulations (WRF‐LES). The MCANOPY includes a suite of subcanopy processes, including radiation transfer, photosynthesis, canopy layer energy balance, momentum drag, and heat, water vapor, and CO2exchange between canopy layers and the canopy atmosphere. Numerical schemes for heat and water transport in soil, ground surface energy balance, and soil respiration are also included. Both the stand‐alone MCANOPY and the coupled system (the WRF‐LES‐MCANOPY) are evaluated against data measured in the Canopy Horizontal Array Turbulence Study field experiment. The MCANOPY performs reasonably well in reproducing vertical profiles of mean and turbulent flows as well as second‐order statistical quantities including heat and scalar fluxes within the canopy under unstable stability conditions. The coupled WRF‐LES‐MCANOPY captures major features of canopy edge flows under both neutral and unstable conditions. Limitations of the MCANOPY are discussed for our further work. Our results suggest that our model can be a promising modeling system for a variety of applications to study canopy flows and scalar transport (e.g., CO2).

     
    more » « less