skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 7, 2026

Title: Genetic divergence in a marine copepod associated with marginal habitats across the subarctic Pacific
The lipid-rich copepodNeocalanus flemingeriis abundant throughout the subarctic Pacific, with a biogeographic range that includes the open ocean, marginal seas and fjord systems. Two distinct genetic variants have been reported based on differences in size: the ‘small form’, with a 1 yr life cycle, is found throughout the region, and the ‘large form’, with a 2 yr life cycle, is found in the western Pacific, where it is most abundant in the Sea of Okhotsk. Using a molecular approach, this study examined the genetic composition ofN. flemingeripopulations in the Gulf of Alaska from multiple stations over a 9 yr period. This is the first report of the occurrence of the large form in the eastern Pacific, where it exhibits a significant presence in fjord systems. However, in this region, both the small- and large-formN. flemingerihave annual life cycles. Collections from nearshore to offshore locations over multiple years indicated both interannual and spatial differences in the relative proportion of the 2 variants. Our results show that the forms inhabit overlapping yet distinct habitats, potentially due to adaptation to contrasting environmental conditions.  more » « less
Award ID(s):
2222376
PAR ID:
10636479
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Inter-Research Science publisher
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
766
ISSN:
0171-8630
Page Range / eLocation ID:
31 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Diatoms are among the most abundant phytoplankton that inhabit coastal ecosystems, forming large blooms that fuel coastal food webs. Although diatoms are often large and morphologically distinct, many are small or morphologically cryptic making it difficult to understand the temporal dynamics of whole diatom communities and the environmental factors that drive them. Here, we investigated diatom diversity and its environmental correlates using 6 yr of monthly surface water samples from the Narragansett Bay Plankton Time Series to investigate the seasonal and annual variability of diatom species occurrence. High‐throughput amplicon sequencing of filtered biomass yielded 658 diatom amplicon sequence variants (ASVs), of which 347 were identified to species. Of the 49 diatom genera in the sequencing dataset, 33% had never been observed in the time series using microscopy (1959–2014). We observed a weak quadratic relationship between ASV richness and chlorophyll‐aconcentrations, suggesting that richness decreases during blooms. There was a significant difference in diatom ASV richness by season and we identified distinct assemblages associated with different seasons. These assemblages were remarkably synchronous, exhibiting a sinewave‐like pattern, over 6 yr with an annual periodicity that correlated significantly with seasonal changes in temperature, light, and dissolved inorganic nitrogen. The annual cycle of diatom assemblages suggests stability in a key component of the estuarine food web known to influence ecosystem resilience and function. Deviations from the annual cycle of recurrence could be used to distinguish between changes in community structure driven by annual fluctuations in the environment and those driven by climate‐change stressors. 
    more » « less
  2. The oldest existing type material for any of the xeniid soft corals, Sympodium caeruleum Ehrenberg, 1834, is re-described. An integrated analysis of molecular and morphological characters of Indo-Pacific Xeniidae support the description of seven new species of that genus. The extent of interspecific morphological variation within the genus is extensive; colonies arise from an encrusting membrane of variable thickness that can be either mat-like or may have ribbon-like extensions or irregularly shaped low mounds. The polyps can either arise separately from the membrane or may be arranged into clusters of polyps that bud off at different levels to form small branched groups. The sclerites of all species are uniformly ellipsoid platelets, abundant throughout the colony. The genetic results suggest that Sympodium species demonstrate restricted geographic ranges and regional endemism, with distinct genotypes (molecular operational taxonomic units) each mostly found at a single Indo-Pacific location. The results emphasize the importance of integrating classical taxonomy with a re-examination of original old type material and molecular phylogenetic analyses, in order to delineate species boundaries and to recognize biodiversity patterns. 
    more » « less
  3. ABSTRACT Brook Trout (Salvelinus fontinalis) populations have experienced marked declines throughout their native range and are presently threatened due to isolation in small habitat fragments, land use changes, and climate change. The existence of numerous, spatially distinct populations poses substantial challenges for monitoring population status (e.g., abundance, recruitment, or occupancy). Genetic monitoring with estimates of effective number of breeders (Nb) provides a potentially powerful metric to complement existing population monitoring, assessment, and prioritization. We estimatedNbfor 71 Brook Trout habitat units in mid‐Atlantic region of the United States and obtained a meanNbof 73.2 (range 6.90–493). Our modeling approach tested whetherNbestimates were sensitive to differences in habitat size, presence of non‐native salmonids, base flow index, temperature, acidic precipitation, and indices of anthropogenic disturbance. We found significant support for three of our hypotheses including the positive influences of available habitat and base flow index and negative effect of temperature. Our results are consistent with presently observed and predicted future impacts of climate change on populations of this cold‐water fish. Importantly, these findings support the use ofNbin population assessments as an index of relative population status. 
    more » « less
  4. ABSTRACT Sister taxa that have diverged and persisted in sympatry have likely been exposed to the same general environmental changes throughout their evolutionary history and may thus exhibit similar phylogeographies. Here, we compare the phylogeographic patterns of two sister species of isopods (genusTylos) that have broadly overlapping distributions but distinct habitat preferences in the supralittoral zone of Chile. The dynamic geoclimatic history of this region during the Quaternary has been implicated in shaping the evolutionary histories of other coastal taxa.Tylos spinulosusis found in sandy beaches at latitudes ~27°–30° S, whereasTylos chilensishas been found in rocky shores at ~27°–33° S and at ~39°–42° S. We sampled both species across their ranges (collectively from 20 localities) and obtained sequences from at least one mitochondrial gene for 95 T. chilensisand 41 T. spinulosus. We used phylogenetics and population genetics methods to analyze four single‐gene and one concatenated datasets: 12S rDNA (n = 130); 16S rDNA (n = 31); Cytochrome oxidase subunit I (n = 28); Cytochrome b (n = 24); concatenation of the four genes (n = 24). Both species show high levels of isolation of local populations, consistent with expectations from their limited autonomous dispersal potential. However, they exhibit strikingly different mitochondrial phylogeographic patterns.Tylos chilensisshows evidence of multiple relatively deep divergence events leading to geographically restricted lineages that appear to have persisted over multiple glaciations. Surprisingly, one lineage ofT. chilensiswas found in geographically distant localities, suggesting the possibility of human‐mediated dispersal.Tylos spinulosusappears to have undergone a relatively recent bottleneck followed by a population/range expansion. Differences in life histories and habitat preferences or stochasticity may have contributed to these striking phylogeographic differences. Finally, the high levels of differentiation and isolation among populations indicate that they are highly vulnerable to extirpation. We discuss threats to their persistence and recommendations for their conservation. 
    more » « less
  5. Abstract Many migratory species, from monarch butterflies to wildebeest, express partial migration, where only a subset of a population migrates. This intraspecific variation is likely to have large ecological consequences. We studied the ecological consequences of partial migration in a salmonid fish,Oncorhynchus mykiss, in coastal streams in California, USA. One ecotype, steelhead trout, migrates to the ocean, whereas the other, rainbow trout, completes its lifecycle in freshwater. Migration has a strong genetic basis inO. mykiss. In one stream, we found differences in the frequency of migration‐linked genotypes below and above a waterfall barrier (migratory allele frequency of 60% below vs. 31% above). Below the waterfall, in the migratory‐dominated region, the density of young fish (<1 yr old) was approximately twice that in the resident‐dominated region above the waterfall (0.46 vs. 0.26 individuals/m2, respectively), presumably reflecting the higher fecundity of migratory females. Additionally, there were half as many older fish (>1 yr old) in pools downstream of the waterfall (0.05 vs. 0.13 individuals/m2). In a second stream, between‐year variation in the dominance of migratory vs. resident fish allowed us to explore differences in fish density and size structure through time, and we found a consistent pattern. In brief, when migratory genotypes dominated, we found higher densities of young fish and lower densities of older fish, resulting in a simpler size structure, compared to when resident genotypes dominated. Moreover, large resident trout had a slightly higher trophic position than young fish (3.92 vs. 3.42 in one creek and 3.77 vs. 3.17 in the other), quantified with stable isotope data. The difference in fish size structure did not generate trophic cascades. Partial migration is widespread among migratory populations, as is phenotypic divergence between resident and migratory forms, suggesting the potential for widespread ecological effects arising from this common form of intraspecific variation. 
    more » « less