skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intrinsic exchange bias from interfacial reconstruction in an epitaxial Ni x Co y Fe 3− x −y O 4 (111)/ α -Al 2 O 3 (0001) thin film family
Abstract Intrinsic exchange bias is known as the unidirectional exchange anisotropy that emerges in a nominally single-component ferro-(ferri-)magnetic system. In this work, with magnetic and structural characterizations, we demonstrate that intrinsic exchange bias is a general phenomenon in (Ni, Co, Fe)-based spinel oxide films deposited on α -Al2O3(0001) substrates, due to the emergence of a rock-salt interfacial layer consisting of antiferromagnetic CoO from interfacial reconstruction. We show that in NixCoyFe3−x−yO4(111)/ α -Al2O3(0001) films, intrinsic exchange bias and interfacial reconstruction have consistent dependences on Co concentrationy, while the Ni and Fe concentration appears to be less important. This work establishes a family of intrinsic exchange bias materials with great tunability by stoichiometry and highlights the strategy of interface engineering in controlling material functionalities.  more » « less
Award ID(s):
2044049
PAR ID:
10636517
Author(s) / Creator(s):
; ;
Publisher / Repository:
Purpose-Led Publishing
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
36
Issue:
50
ISSN:
0953-8984
Page Range / eLocation ID:
505802
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High-resolution spectroscopy of exoplanet atmospheres provides insights into their composition and dynamics from the resolved line shape and depth of thousands of spectral lines. WASP-127 b is an extremely inflated sub-Saturn (Rp= 1.311RJup,Mp= 0.16MJup) with previously reported detections of H2O and CO2. However, the seeming absence of the primary carbon reservoir expected at WASP-127 b temperatures (Teq∼1400 K) from chemical equilibrium, CO, posed a mystery. In this manuscript, we present the analysis of high-resolution observations of WASP-127 b with the Immersion Grating Infrared Spectrometer on Gemini South. We confirm the presence of H2O (8.67σ) and report the detection of CO (4.34σ). Additionally, we conduct a suite of Bayesian retrieval analyses covering a hierarchy of model complexity and self-consistency. When freely fitting for the molecular gas volume mixing ratios, we obtain super-solar metal enrichment for H2O abundance of log10X H 2 O = −1.23 0.49 + 0.29 and a lower limit on the CO abundance of log10XCO≥–2.20 at 2σconfidence. We also report tentative evidence of photochemistry in WASP-127 b based upon the indicative depletion of H2S. This is also supported by the data preferring models with photochemistry over free-chemistry and thermochemistry. The overall analysis implies a super-solar (∼39× Solar; [M/H] = 1.59 0.30 + 0.30 ) metallicity for the atmosphere of WASP-127 b and an upper limit on its atmospheric C/O ratio as < 0.68. 
    more » « less
  2. Abstract The scale ofα-element yields is difficult to predict from theory because of uncertainties in massive star evolution, supernova physics, and black hole formation, and it is difficult to constrain empirically because the impact of higher yields can be compensated by greater metal loss in galactic winds. We use a recent measurement of the mean iron yield of core collapse supernovae (CCSN) by Rodriguez et al., y ¯ Fe cc = 0.058 ± 0.007 M , to infer the scale ofα-element yields by assuming that the plateau of [α/Fe] abundance ratios observed in low-metallicity stars represents the yield ratio of CCSN. For a plateau at [α/Fe]cc= 0.45, we find that the population-averaged yields of O and Mg are about equal to the solar abundance of these elements, log y O cc / Z O , = log y Mg cc / Z Mg , = 0.01 ± 0.1 , where y X cc is the mass of element X produced by massive stars per unit mass of star formation. The inferred O and Fe yields agree with predictions of the Sukhbold et al. CCSN models assuming their Z9.6+N20 neutrino-driven engine, a scenario in which many progenitors withM< 40Mimplode to black holes rather than exploding. The yields are lower than assumed in many models of the galaxy mass–metallicity relation, reducing the level of outflows needed to match observed abundances. Our one-zone chemical evolution models with η = M ̇ out / M ̇ * 0.6 evolve to solar metallicity at late times. By further requiring that models reach [α/Fe] ≈ 0 at late times, we infer a Hubble-time integrated Type Ia supernova rate of 1.1 × 10 3 M 1 , compatible with estimates from supernova surveys. 
    more » « less
  3. Abstract We study the effect of strain on the magnetic properties and magnetization configurations in nanogranular FexGe 1 x films ( x = 0.53 ± 0.05 ) with and without B20 FeGe nanocrystals surrounded by an amorphous structure. Relaxed films on amorphous silicon nitride membranes reveal a disordered skyrmion phase while films near and on top of a rigid substrate favor ferromagnetism and an anisotropic hybridization of Fedlevels and spin-polarized Gespband states. The weakly coupled topological states emerge at room temperature and become more abundant at cryogenic temperatures without showing indications of pinning at defects or confinement to individual grains. These results demonstrate the possibility to control magnetic exchange and topological magnetism by strain and inform magnetoelasticity-mediated voltage control of topological phases in amorphous quantum materials. 
    more » « less
  4. Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are 9.3 5.4 + 4.6 and 4.2 2.0 + 1.9 M pc 2 ( K km s 1 ) 1 , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( U ¯ ). Among them, U ¯ , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, U ¯ , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relations α CO ( 2 1 ) Σ 0.5 and α CO ( 1 0 ) Σ 0.2 . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors. 
    more » « less
  5. Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure [Fe/H] = 2.17 0.05 + 0.05 , σ [Fe/H] = 0.33 0.07 + 0.07 , and ∇[Fe/H]= −0.23 ± 0.15 dex R e 1 . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure [Fe/H] = 1.95 0.04 + 0.04 , σ [Fe/H] = 0.34 0.05 + 0.05 , and ∇[Fe/H]= −0.46 ± 0.10 dex R e 1 , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s. 
    more » « less