Abstract We consider the problem of estimating the factors of a rank-$$1$$ matrix with i.i.d. Gaussian, rank-$$1$$ measurements that are nonlinearly transformed and corrupted by noise. Considering two prototypical choices for the nonlinearity, we study the convergence properties of a natural alternating update rule for this non-convex optimization problem starting from a random initialization. We show sharp convergence guarantees for a sample-split version of the algorithm by deriving a deterministic one-step recursion that is accurate even in high-dimensional problems. Notably, while the infinite-sample population update is uninformative and suggests exact recovery in a single step, the algorithm—and our deterministic one-step prediction—converges geometrically fast from a random initialization. Our sharp, non-asymptotic analysis also exposes several other fine-grained properties of this problem, including how the nonlinearity and noise level affect convergence behaviour. On a technical level, our results are enabled by showing that the empirical error recursion can be predicted by our deterministic one-step updates within fluctuations of the order $$n^{-1/2}$$ when each iteration is run with $$n$$ observations. Our technique leverages leave-one-out tools originating in the literature on high-dimensional $$M$$-estimation and provides an avenue for sharply analyzing complex iterative algorithms from a random initialization in other high-dimensional optimization problems with random data.
more »
« less
Hyperparameter tuning via trajectory predictions: stochastic prox-linear methods in matrix sensing
Abstract Motivated by the desire to understand stochastic algorithms for nonconvex optimization that are robust to their hyperparameter choices, we analyze a mini-batched prox-linear iterative algorithm for the canonical problem of recovering an unknown rank-1 matrix from rank-1 Gaussian measurements corrupted by noise. We derive a deterministic recursion that predicts the error of this method and show, using a non-asymptotic framework, that this prediction is accurate for any batch-size and a large range of step-sizes. In particular, our analysis reveals that this method, though stochastic, converges linearly from a local initialization with a fixed step-size to a statistical error floor. Our analysis also exposes how the batch-size, step-size, and noise level affect the (linear) convergence rate and the eventual statistical estimation error, and we demonstrate how to use our deterministic predictions to perform hyperparameter tuning (e.g. step-size and batch-size selection) without ever running the method. On a technical level, our analysis is enabled in part by showing that the fluctuations of the empirical iterates around our deterministic predictions scale with the error of the previous iterate.
more »
« less
- PAR ID:
- 10636541
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Mathematical Programming
- ISSN:
- 0025-5610
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the task of heavy-tailed statistical estimation given streaming p-dimensional samples. This could also be viewed as stochastic optimization under heavy-tailed distributions, with an additional O(p) space complexity constraint. We design a clipped stochastic gradient descent algorithm and provide an improved analysis, under a more nuanced condition on the noise of the stochastic gradients, which we show is critical when analyzing stochastic optimization problems arising from general statistical estimation problems. Our results guarantee convergence not just in expectation but with exponential concentration, and moreover does so using O(1) batch size. We provide consequences of our results for mean estimation and linear regression. Finally, we provide empirical corroboration of our results and algorithms via synthetic experiments for mean estimation and linear regression.more » « less
-
We analyze deep ReLU neural networks trained with mini-batch stochastic gradient decent and weight decay. We prove that the source of the SGD noise is an implicit low rank constraint across all of the weight matrices within the network. Furthermore, we show, both theoretically and empirically, that when training a neural network using Stochastic Gradient Descent (SGD) with a small batch size, the resulting weight matrices are expected to be of small rank. Our analysis relies on a minimal set of assumptions and the neural networks may include convolutional layers, residual connections, as well as batch normalization layers.more » « less
-
Recent work has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of unknown chaotic dynamical systems. Short-term predictions of the state evolution and long-term predictions of the statistical patterns of the dynamics (``climate'') can be produced by employing a feedback loop, whereby the model is trained to predict forward one time step, then the model output is used as input for multiple time steps. In the absence of mitigating techniques, however, this technique can result in artificially rapid error growth. In this article, we systematically examine the technique of adding noise to the ML model input during training to promote stability and improve prediction accuracy. Furthermore, we introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training. Our case study uses reservoir computing, a machine-learning method using recurrent neural networks, to predict the spatiotemporal chaotic Kuramoto-Sivashinsky equation. We find that reservoir computers trained with noise or with LMNT produce climate predictions that appear to be indefinitely stable and have a climate very similar to the true system, while reservoir computers trained without regularization are unstable. Compared with other regularization techniques that yield stability in some cases, we find that both short-term and climate predictions from reservoir computers trained with noise or with LMNT are substantially more accurate. Finally, we show that the deterministic aspect of our LMNT regularization facilitates fast hyperparameter tuning when compared to training with noise.more » « less
-
This work characterizes the benefits of averaging techniques widely used in conjunction with stochastic gradient descent (SGD). In particular, this work presents a sharp analysis of: (1) mini- batching, a method of averaging many samples of a stochastic gradient to both reduce the variance of a stochastic gradient estimate and for parallelizing SGD and (2) tail-averaging, a method involving averaging the final few iterates of SGD in order to decrease the variance in SGD’s final iterate. This work presents sharp finite sample generalization error bounds for these schemes for the stochastic approximation problem of least squares regression. Furthermore, this work establishes a precise problem-dependent extent to which mini-batching can be used to yield provable near-linear parallelization speedups over SGD with batch size one. This characterization is used to understand the relationship between learning rate versus batch size when considering the excess risk of the final iterate of an SGD procedure. Next, this mini-batching characterization is utilized in providing a highly parallelizable SGD method that achieves the min- imax risk with nearly the same number of serial updates as batch gradient descent, improving significantly over existing SGD-style methods. Following this, a non-asymptotic excess risk bound for model averaging (which is a communication efficient parallelization scheme) is provided. Finally, this work sheds light on fundamental differences in SGD’s behavior when dealing with mis-specified models in the non-realizable least squares problem. This paper shows that maximal stepsizes ensuring minimax risk for the mis-specified case must depend on the noise properties. The analysis tools used by this paper generalize the operator view of averaged SGD (De ́fossez and Bach, 2015) followed by developing a novel analysis in bounding these operators to char- acterize the generalization error. These techniques are of broader interest in analyzing various computational aspects of stochastic approximation.more » « less
An official website of the United States government
