skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: A Comparison of Novice and Expert Approaches to Problem Solving
Within the profession, there is a desire for graduating engineers to be “T-shaped” professionals who have a deep subject knowledge (the vertical of the “T”), with the ability to apply that knowledge across a broad range of contexts (the horizontal of the “T”). The ability to transfer knowledge between courses in the undergraduate curriculum, and then into one’s career, is, therefore, an important skill that should be developed in engineering curricula. Based on prior work in this area, and with the goal of developing adaptive problem solvers who can transfer their knowledge across a range of contexts, we compare the problem solving approaches taken by both experts (faculty) and novices (students) when faced with problems that require knowledge to be transferred in order to be solved. Transcripts and artifacts generated through a series of think aloud protocols are analyzed using an a priori coding scheme and thematic analysis based around a sense-making framework of knowledge transfer. A comparison of expert (faculty) and novice (student) approaches to problem solving demonstrated how often experts reflect on their progress during the solving process and the manner in which they are able to connect problems in one context to similar problems they have encountered in the past in other areas of engineering. The ability of experts to “chunk” problems into smaller stages and reflect on individual elements of the problem at hand, rather than the problem as a whole, was also observed to be a differentiating factor in their approach as compared to novices.  more » « less
Award ID(s):
2301341
PAR ID:
10636808
Author(s) / Creator(s):
;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Montreal, Quebec, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well-established that students have difficulty transferring theory and skills between courses in their undergraduate curriculum. At the same time, many college-level courses only concern material relating to the course itself and do not cover how this material might be used elsewhere. It is unsurprising, then, that students are unable to transfer and integrate knowledge from multiple areas into new problems as part of capstone design courses, for example, or in their careers. More work is required to better enable students to transfer knowledge between their courses, learn skills and theory more deeply, and to form engineers who are better able to adapt to new situations and solve “systems-level” problems. Various authors in both the cognitive and disciplinary sciences have discussed these difficulties with the transfer of knowledge, and noted the need to develop tools and techniques for promoting knowledge transfer, as well as to help students develop cross-course connections. This work aimed to address these barriers to knowledge transfer, and crucially develop the needed activities and practices for promoting transfer by answering the following research questions: (1) What are the primary challenges experienced by students when tasked with transferring theory and skills from prior courses, specifically mathematics and physics? (2) What methods of prior knowledge activation are most effective in enabling students to apply this prior knowledge in new areas of study? In this paper we present a holistic summary of the work completed under this award. Initially, findings from a series of n=23 think aloud interviews, in which participants were asked to solve a typical engineering statics problem, is presented. These interviews evidenced multiple barriers to knowledge transfer (lack of prior knowledge, accuracy of prior knowledge, conceptual understanding, lack of teaching of applications, language of problem, curricular mapping) that hindered participant success in terms of using their mathematical skills to solve the problem. Findings also indicated the importance of reflective thinking on behalf of the participants to their problem solving success. Based on this initial work using think alouds, a further set of interviews (n=8) were conducted to more deeply examine student conceptions of important mathematical topics that are transferred into engineering such as integration and centroids. Findings indicated that participant knowledge and understanding of centroids in particular was generally based around more intuitive or geometrical conceptions rather than concrete physical or mathematical models. Following up on the initial study of problem solving, the importance of reflection on behalf of the problem solver was also examined in more detail. Comparison of expert (faculty) and novice (student) approaches to problem solving demonstrates how often experts reflect on their progress during the solving process and the manner in which they are able to connect problems in one context to similar problems they have encountered in the past in other areas of engineering. The ability of experts to “chunk” problems into smaller stages and reflect on individual elements of the problem at hand rather than the problem as a whole was also seen to be a differentiating factor in their approach as compared to novices. Similar to this paper, the associated poster presentation will cover a holistic representation of the findings of this study. 
    more » « less
  2. I initially became interested in knowledge transfer after observing my students’ general inability to use mathematical knowledge and skills in an applied (engineering) context. My personal belief was that the students should have an understanding of basic basic mathematical concepts, like integration, and be able to use them correctly to solve problems. Clearly, something was missing in my students’ understanding or perhaps memory that was causing them problems in this regard. In my initial work on knowledge transfer, I found that many students did not even recognize the need to transfer knowledge and for example, to integrate to solve a problem framed in an engineering context unless they were prompted to do so. Concerned by this troubling observation, coupled with my belief that engineers should be able to both understand and apply mathematical concepts in their coursework and careers, I determined to investigate the cause of the problem and, if possible, evidence a potential solution to help students transfer mathematical knowledge into an applied (engineering) context. In this study, I examine an expert (faculty) approach to problem solving using a semi-structured, think-aloud interview protocol coupled with a thorough thematic analysis for phenomenological themes. This analysis, grounded in an existing framework of knowledge transfer, provides a rich, thick description of the knowledge transfer, and problem solving process employed by the faculty expert and serves as a useful comparative case against which student approaches to problem solving and knowledge transfer can be judged. Important findings of this study relate to the extensive use of reflective and evaluative practices employed by the faculty member at all stages of the problem solving process. These internal checks and balances are rarely observed among novice problem solvers and perhaps represent behaviors that we, as educators, should seek to impart in our students if they are to become more adaptable engineers who are better equipped to transfer their knowledge and skills across a range of contexts. 
    more » « less
  3. Students often face difficulties in transferring concepts, knowledge and skills between their courses. This difficulty is especially true of the fundamental math and science courses that are often taught outside the major of the student and without engineering context. At the same time, graduating engineers are moving into an increasingly interdisciplinary workplace that values the ability to work broadly across a range of contexts. More work is needed to better prepare students to adapt their knowledge and skills to new situations and to demonstrate how the various courses and concepts within their curricula relate. In this study, we ask students, teaching assistants and faculty to “think aloud” through their solution to a statics problem that requires mathematical knowledge to be transferred in order to be solved. Two faculty, two teaching assistants and seven undergraduate students are interviewed as they think aloud through the problem. Interview transcripts and solutions to the statics problem are then examined for themes and patterns in responses in order to draw conclusions about the challenges different populations face in transferring knowledge and solving such problems. Observations indicated that students could apply simple integration skills to find the area of a shape when given a curve describing its shape, but could not use integration to find the centroid. The participants did however recall being taught how to calculate centroids in the past and discussed a lack of usage of this skill causing their inability to recall it correctly. Student participants in general displayed simple approaches to problem solving based on reading the problem statement rather than following an engineering approach starting with governing equations. A potential barrier to problem solving success was identified in the varying symbols used by different research participants which could lead to a lack of understanding if these symbols are not clearly explained and defined in a classroom setting. Future work will further examine these themes, as well as developing prompts and activities to promote knowledge transfer and problem solving success. 
    more » « less
  4. Solving open-ended complex problems is an essential part of being an engineer and one of the qualities needed in an engineering workplace. In order to help undergraduate engineering students develop such qualities and better prepare them for their future careers, this study is a preliminary effort to explore the problem solving approaches adopted by a student, faculty, and practicing engineer in civil engineering. As part of an ongoing NSF-funded study, this paper qualitatively investigates how three participants solve an ill-structured engineering problem. This study is guided by the following research question: What are the similarities and differences between a student, faculty, and practicing engineer in the approach to solve an ill-structured engineering problem? Verbal protocol analysis was used to answer this research question. Participants were asked to verbalize their response while they worked on the proposed problem. This paper includes a detailed analysis of the observed problem solving processes of the participants. Our preliminary findings indicate some distinct differences between the student, professor, and practicing engineer in their problem solving approaches. The student and practicing engineer used their prior knowledge to develop a solution, while the faculty did not make any connection to outside knowledge. It was also observed that the faculty and practicing engineer spent a great deal of time on feasibility and safety issues, whereas the student spent more time detailing the tool that would be used as their solution. Through additional data collection and analysis, we will better understand the similarities and differences between students, professionals, and faculty in terms of how they approach an ill-structured problem. This study will provide insights that will lead to the development of ways to better prepare engineering students to solve complex problems. 
    more » « less
  5. Problem-solving is a critical skill in the workplace, but recent college graduates are often deficient in problem-solving skills. Introductory STEM courses present engineering students with well-structured problems with single-path solutions that do not prepare students with the problem-solving skills they will need to solve complex problems within authentic engineering contexts. When presented with complex problems in authentic contexts, engineering students find it difficult to transfer the scientific knowledge learned in their STEM courses to solve these integrated and ill structured problems. By integrating physics laboratories with engineering design problems, students are taught to apply physics principles to solve ill-structured and complex engineering problems. The integration of engineering design processes to physics labs is meant to help students transfer physics learning to engineering problems, as well as to transfer the design skills learned in their engineering courses to the physics lab. We hypothesize this integration will help students become better problem solvers when they go out to industry after graduation. The purpose of this study is to examine how students transfer their understanding of physics concepts to solve ill-structured engineering problems by means of an engineering design project in a physics laboratory. We use a case-study methodology to examine two cases and analyze the cases using a lens of co-regulated learning and transfer between physics and engineering contexts. Observations were conducted using transfer lenses. That is, we observed groups during the physics labs for evidence of transfer. The research question for this study was, to what extent do students relate physics concepts with concepts from other materials (classes) through an engineering design project incorporated in a physics laboratory? Teams were observed over the course of 6 weeks as they completed the second design challenge. The cases presented in this study were selected using observations from the lab instructors of the team’s work in the first design project. Two teams, one who performed well, and one that performed poorly, were selected to be observed to provide insight on how students use physics concepts to engage in the design process. The second design challenge asked students to design an eco-friendly way of delivering packages of food to an island located in the middle of the river, which is home to critically endangered species. They are given constraints that the solution cannot disrupt the habitat in any way, nor can the animals come into contact directly with humans or loud noises. Preliminary results indicate that both teams successfully demonstrated transfer between physics and engineering contexts, and integrated physics concepts from multiple labs to complete the design project. Teams that struggle seem to be less connected with the design process at the beginning of the project and are less organized. In contrast, teams that are successful demonstrate greater co-regulated learning (communication, reflection, etc.) and focus on making connections between the physics concepts and principles of engineering design from their engineering course work. 
    more » « less