skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Lattice simulations of axion-U(1) inflation: gravitational waves, magnetic fields, and scalar statistics
Abstract We numerically study axion-U(1) inflation, focusing on the regime where the coupling between axions and gauge fields results in significant backreaction from the amplified gauge fields during inflation. These amplified gauge fields not only generate high-frequency gravitational waves (GWs), but also enhance spatial inhomogeneities in the axion field. GWs serve as key probe for constraining the coupling strength between the axion and gauge fields. We find that, when backreaction is important during inflation, the constraints on the coupling strength due to GW overproduction are relaxed compared to previous studies, in which backreaction matters only after inflation. Moreover, our results suggest that the probability density function (PDF) of axion fluctuations tends toward a Gaussian distribution even in cases where gauge field backreaction is important only after inflation. This aligns with previous studies where the same effect was observed for cases with strong backreaction during inflation. This finding can be crucial for future studies of primordial black hole (PBH) formation, which can further constrain the coupling strength. We also calculate the spectrum of the produced magnetic fields in this model and find that their strength is compatible with the observed lower limits.  more » « less
Award ID(s):
2307698
PAR ID:
10636886
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2025
Issue:
05
ISSN:
1475-7516
Page Range / eLocation ID:
079
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Axion inflation coupled to Abelian gauge fields via a Chern-Simons-like term of the form$$ \phi F\overset{\sim }{F} $$ ϕF F ~ represents an attractive inflationary model with a rich phenomenology, including the production of magnetic fields, black holes, gravitational waves, and the matter-antimatter asymmetry. In this work, we focus on a particular regime of axion inflation, the so-called Anber-Sorbo (AS) solution, in which the energy loss in the gauge-field production provides the dominant source of friction for the inflaton motion. We revisit the AS solution and confirm that it is unstable. Contrary to earlier numerical works that attempted to reach the AS solution starting from a regime of weak backreaction, we perform, for the first time, a numerical evolution starting directly from the regime of strong backreaction. Our analysis strongly suggests that, at least as long as one neglects spatial inhomogeneities in the inflaton field, the AS solution has no basin of attraction, not even a very small one that might have been missed in previous numerical studies. Our analysis employs an arsenal of analytical and numerical techniques, some established and some newly introduced, including (1) linear perturbation theory along the lines of ref. [1], (2) the gradient expansion formalism (GEF) developed in ref. [2], (3) a new linearized version of the GEF, and (4) the standard mode-by-mode approach in momentum space in combination with input from the GEF. All these methods yield consistent results confirming the instability of the AS solution, which renders the dynamics of axion inflation in the strong-backreaction regime even more interesting than previously believed. 
    more » « less
  2. The coupling between a pseudo-scalar inflaton and a gauge field leads to an amount of additional density perturbations and gravitational waves (GWs) that is strongly sensitive to the inflaton speed. This naturally results in enhanced GWs at (relatively) small scales that exited the horizon well after the CMB ones, and that can be probed by a variety of GW observatories (from pulsar timing arrays, to astrometry, to space-borne and ground-based interferometers). This production occurs in a regime in which the gauge field significantly backreacts on the inflaton motion. Contrary to earlier assumptions, it was later shown that this regime is characterized by an oscillatory behavior of the inflaton speed, with a period of O ( 5 ) e-folds. Bursts of GWs are produced at the maxima of the speed, imprinting nearly periodic bumps in the frequency-dependent spectrum of GWs produced during inflation. This can potentially generate correlated peaks appearing in the same or in different GWs experiments. While recent lattice studies show that the inclusion of inflaton gradients can modify significantly the dynamics of this system in the strong backreaction regime, this is not the case for the first oscillation or two of the inflaton speed, so that we expect our results to be robust for modes that were excited during that epoch. 
    more » « less
  3. A<sc>bstract</sc> It is difficult to construct a post-inflation QCD axion model that solves the axion quality problem (and hence the Strong CP problem) without introducing a cosmological disaster. In a post-inflation axion model, the axion field value is randomized during the Peccei-Quinn phase transition, and axion domain walls form at the QCD phase transition. We emphasize that the gauge equivalence of all minima of the axion potential (i.e., domain wall number equals one) is insufficient to solve the cosmological domain wall problem. The axion string on which a domain wall ends must exist as an individual object (as opposed to a multi-string state), and it must be produced in the early universe. These conditions are often not satisfied in concrete models. Post-inflation axion models also face a potential problem from fractionally charged relics; solving this problem often leads to low-energy Landau poles for Standard Model gauge couplings, reintroducing the quality problem. We study several examples, finding that models that solve the quality problem face cosmological problems, and vice versa. This is not a no-go theorem; nonetheless, we argue that it is much more difficult than generally appreciated to find a viable post-inflation QCD axion model. Successful examples may have a nonstandard cosmological history (e.g., multiple types of cosmic axion strings of different tensions), undermining the widespread expectation that the post-inflation QCD axion scenario predicts a unique mass for axion dark matter. 
    more » « less
  4. Abstract We perform an analytical study of the stability of the background solution [1] of the model in which an inflaton, through an axionic coupling to a U(1) gauge field, causes an amplification of the gauge field modes that strongly backreact on its dynamics. To this goal, we study the evolution of the gauge field modes coupled to the inflaton zero mode, treating perturbatively the deviation of the inflaton velocity from its mean-field value. As long as the system is in the strong backreaction regime we find that the inflaton velocity performs oscillations of increasing amplitude about the value it would have in the approximation of constant velocity, confirming an instability that has been observed in numerical studies. 
    more » « less
  5. We obtain the nonequilibrium condensate of the Chern Simons density induced by a misaligned homogeneous coherent axion field in linear response. The Chern-Simons dynamical susceptibility is simply related to the axion self-energy, a result that is valid to leading order in the axion coupling but to all orders in the couplings of the gauge fields to other fields within or beyond the standard model except the axion. The induced Chern-Simons density requires renormalization which is achieved by vacuum subtraction. 
    more » « less