This content will become publicly available on January 1, 2025
- Award ID(s):
- 2112800
- PAR ID:
- 10525473
- Publisher / Repository:
- Institute of Physics
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2024
- Issue:
- 01
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 034
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We perform an analytical study of the stability of the background solution [1] of the model in which an inflaton, through an axionic coupling to a U(1) gauge field, causes an amplification of the gauge field modes that strongly backreact on its dynamics. To this goal, we study the evolution of the gauge field modes coupled to the inflaton zero mode, treating perturbatively the deviation of the inflaton velocity from its mean-field value. As long as the system is in the strong backreaction regime we find that the inflaton velocity performs oscillations of increasing amplitude about the value it would have in the approximation of constant velocity, confirming an instability that has been observed in numerical studies.more » « less
-
The scalar and tensor fluctuations produced during inflation can be correlated, if arising from the same underlying mechanism. In this paper we investigate such correlation in the model of axion inflation, where the rolling inflaton produces quanta of a U(1) gauge field which, in turn, source scalar and tensor fluctuations. We compute the primordial correlator of the curvature perturbation, ζ, with the amplitude of the gravitational waves squared, hijhij, at frequencies probed by gravitational wave detectors. This two-point function receives two contributions: one arising from the correlation of gravitational waves with the scalar perturbations generated by the standard mechanism of amplification of vacuum fluctuations, and the other coming from the correlation of gravitational waves with the scalar perturbations sourced by the gauge field. Our analysis shows that the latter effect is generally dominant. The correlator, normalized by the amplitude of ζ and of hijhij, turns out to be of the order of 10−2×(fequilNL)1/3, where fequilNL measures the scalar bispectrum sourced by the gauge modes.more » « less
-
Axion inflation coupled to Abelian gauge fields via a Chern-Simons-like term of the formmore » « less
represents an attractive inflationary model with a rich phenomenology, including the production of magnetic fields, black holes, gravitational waves, and the matter-antimatter asymmetry. In this work, we focus on a particular regime of axion inflation, the so-called Anber-Sorbo (AS) solution, in which the energy loss in the gauge-field production provides the dominant source of friction for the inflaton motion. We revisit the AS solution and confirm that it is unstable. Contrary to earlier numerical works that attempted to reach the AS solution starting from a regime of weak backreaction, we perform, for the first time, a numerical evolution starting directly from the regime of strong backreaction. Our analysis strongly suggests that, at least as long as one neglects spatial inhomogeneities in the inflaton field, the AS solution has no basin of attraction, not even a very small one that might have been missed in previous numerical studies. Our analysis employs an arsenal of analytical and numerical techniques, some established and some newly introduced, including (1) linear perturbation theory along the lines of ref. [1], (2) the gradient expansion formalism (GEF) developed in ref. [2], (3) a new linearized version of the GEF, and (4) the standard mode-by-mode approach in momentum space in combination with input from the GEF. All these methods yield consistent results confirming the instability of the AS solution, which renders the dynamics of axion inflation in the strong-backreaction regime even more interesting than previously believed.$$ \phi F\overset{\sim }{F} $$ -
Abstract Modeling the propagation of gravitational waves (GWs) in media other than vacuum is complicated by the gauge freedom of linearized gravity in that, once nonlinearities are taken into consideration, gauge artifacts can cause spurious acceleration of the matter. To eliminate these artifacts, we propose how to keep the theory of dispersive GWs gauge-invariant beyond the linear approximation and, in particular, obtain an unambiguous gauge-invariant expression for the energy--momentum of a GW in dispersive medium. Using analytic tools from plasma physics, we propose an exactly gauge-invariant ``quasilinear'' theory, in which GWs are governed by linear equations and also affect the background metric on scales large compared to their wavelength. As a corollary, the gauge-invariant geometrical optics of linear dispersive GWs in a general background is formulated. As an example, we show how the well-known properties of vacuum GWs are naturally and concisely yielded by our theory in a manifestly gauge-invariant form. We also show how the gauge invariance can be maintained within a given accuracy to an arbitrary order in the GW amplitude. These results are intended to form a physically meaningful framework for studying dispersive GWs in matter.
-
Effective field theories (EFTs) of heavy particles coupled to the inflaton are rife with operator redundancies, frequently obscured by sensitivity to both boundary terms and field redefinitions. We initiate a systematic study of these redundancies by establishing a minimal operator basis for an archetypal example, the abelian gauge-Higgs-inflaton EFT. Working up to dimension 9, we show that certain low-dimensional operators are entirely redundant and identify new non-redundant operators with potentially interesting cosmological collider signals. Our methods generalize straightforwardly to other EFTs of heavy particles coupled to the inflaton.more » « less