Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short Ξ³-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. 
                        more » 
                        « less   
                    This content will become publicly available on July 1, 2026
                            
                            An Overview of the MUSES Calculation Engine and How It Can Be Used to Describe Neutron Stars
                        
                    
    
            For densities beyond nuclear saturation, there is still a large uncertainty in the equations of state (EoSs) of dense matter that translate into uncertainties in the internal structure of neutron stars. The MUSES Calculation Engine provides a free and open-source composable workflow management system, which allows users to calculate the EoSs of dense and hot matter that can be used, e.g., to describe neutron stars. For this work, we make use of two MUSES EoS modules, i.e., Crust Density Functional Theory and Chiral Mean Field model, with beta-equilibrium with leptons enforced in the Lepton module, then connected by the Synthesis module using different functions: hyperbolic tangent, generalized Gaussian, bump, and smoothstep. We then calculate stellar structure using the QLIMR module and discuss how the different interpolating functions affect our results. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2103680
- PAR ID:
- 10637110
- Publisher / Repository:
- Universe
- Date Published:
- Journal Name:
- Universe
- Volume:
- 11
- Issue:
- 7
- ISSN:
- 2218-1997
- Page Range / eLocation ID:
- 200
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Binary neutron star mergers provide a unique probe of the dense-matter equation of state (EoS) across a wide range of parameter space, from the zero-temperature EoS during the inspiral to the high-temperature EoS following the merger. In this paper, we implement a new model for calculating parametrized finite-temperature EoS effects into numerical relativity simulations. This "M* model" is based on a two-parameter approximation of the particle effective mass and includes the leading-order effects of degeneracy in the thermal pressure and energy. We test our numerical implementation by performing evolutions of rotating single stars with zero- and non-zero temperature gradients, as well as evolutions of binary neutron star mergers. We find that our new finite-temperature EoS implementation can support stable stars over many dynamical timescales. We also perform a first parameter study to explore the role of the M* parameters in binary neutron star merger simulations. All simulations start from identical initial data with identical cold EoSs, and differ only in the thermal part of the EoS. We find that both the thermal profile of the remnant and the post-merger gravitational wave signal depend on the choice of M* parameters, but that the total merger ejecta depends only weakly on the finite-temperature part of the EoS across a wide range of parameters. Our simulations provide a first step toward understanding how the finite-temperature properties of dense matter may affect future observations of binary neutron star mergers.more » « less
- 
            Abstract The equation of state (EOS) of dense strongly interacting matter can be probed by astrophysical observations of neutron stars (NS), such as X-ray detections of pulsars or the measurement of the tidal deformability of NSs during the inspiral stage of NS mergers. These observations constrain the EOS at most up to the density of the maximum-mass configuration,nTOV, which is the highest density that can be explored by stable NSs for a given EOS. However, under the right circumstances, binary neutron star (BNS) mergers can create a postmerger remnant that explores densities abovenTOV. In this work, we explore whether the EOS abovenTOVcan be measured from gravitational-wave or electromagnetic observations of the postmerger remnant. We perform a total of 25 numerical-relativity simulations of BNS mergers for a range of EOSs and find no case in which different descriptions of the matter abovenTOVhave a detectable impact on postmerger observables. Hence, we conclude that the EOS abovenTOVcan likely not be probed through BNS merger observations for the current and next generation of detectors.more » « less
- 
            null (Ed.)In this work, we discuss the dense matter equation of state (EOS) for the extreme range of conditions encountered in neutron stars and their mergers. The calculation of the properties of such an EOS involves modeling different degrees of freedom (such as nuclei, nucleons, hyperons, and quarks), taking into account different symmetries, and including finite density and temperature effects in a thermodynamically consistent manner. We begin by addressing subnuclear matter consisting of nucleons and a small admixture of light nuclei in the context of the excluded volume approach. We then turn our attention to supranuclear homogeneous matter as described by the Chiral Mean Field (CMF) formalism. Finally, we present results from realistic neutron-star-merger simulations performed using the CMF model that predict signatures for deconfinement to quark matter in gravitational wave signals.more » « less
- 
            Neutron star properties depend on both nuclear physics and astrophysical processes, and thus observations of neutron stars offer constraints on both large-scale astrophysics and the behavior of cold, dense matter. In this study, we use astronomical data to jointly infer the universal equation of state of dense matter along with two distinct astrophysical populations: Galactic neutron stars observed electromagnetically and merging neutron stars in binaries observed with gravitational waves. We place constraints on neutron star properties and quantify the extent to which they are attributable to macrophysics or microphysics. We confirm previous results indicating that the Galactic and merging neutron stars have distinct mass distributions. The inferred maximum mass of both Galactic neutron stars, πpop,EM=2.0β’5+0.11β0.06β’πβ (median and 90% symmetric credible interval), and merging neutron star binaries, πpop,GW =1.8β’5+0.39β0.16β’πβ, are consistent with the maximum mass of nonrotating neutron stars set by nuclear physics, πTOV =2.2β’8+0.41β0.21β’πβ. The radius of a 1.4β’πβ neutron star is 12.2+0.8β0.9ββkm, consistent with, though βΌ20% tighter than, previous results using an identical equation of state model. Even though observed Galactic and merging neutron stars originate from populations with distinct properties, there is currently no evidence that astrophysical processes cannot produce neutron stars up to the maximum value imposed by nuclear physics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
