skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 9, 2026

Title: CoOpTex: Multimodal Cooperative Perception and Task Execution in Time-Critical Distributed Autonomous System
Integrating multimodal data such as RGB and LiDAR from multiple views significantly increases computational and communication demands, which can be challenging for resource-constrained autonomous agents while meeting the time-critical deadlines required for various mission-critical applications. To address this challenge, we propose CoOpTex, a collaborative task execution framework designed for cooperative perception in distributed autonomous systems (DAS). CoOpTex contribution is twofold: (a) CoOpTex fuses multiview RGB images to create a panoramic camera view for 2D object detection and utilizes 360° LiDAR for 3D object detection, improving accuracy with a lightweight Graph Neural Network (GNN) that integrates object coordinates from both perspectives, (b) To optimize task execution and meet the deadline, CoOpTex dynamically offloads computationally intensive image stitching tasks to auxiliary devices when available and adjusts frame capture rates for RGB frames based on device mobility and processing capabilities. We implement CoOpTex in real-time on static and mobile heterogeneous autonomous agents, which helps to significantly reduce deadline violations by 100% while improving frame rates for 2D detection by 2.2 times in stationary and 2 times in mobile conditions, demonstrating its effectiveness in enabling real-time cooperative perception.  more » « less
Award ID(s):
2233879
PAR ID:
10637218
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-4372-3
Page Range / eLocation ID:
195 to 202
Format(s):
Medium: X
Location:
Lucca, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Interest in cooperative perception is growing quickly due to its remarkable performance in improving perception capabilities for connected and automated vehicles. This improvement is crucial, especially for automated driving scenarios in which perception performance is one of the main bottlenecks to the development of safety and efficiency. However, current cooperative perception methods typically assume that all collaborating vehicles have enough communication bandwidth to share all features with an identical spatial size, which is impractical for real-world scenarios. In this paper, we propose Adaptive Cooperative Perception, a new cooperative perception framework that is not limited by the aforementioned assumptions, aiming to enable cooperative perception under more realistic and challenging conditions. To support this, a novel feature encoder is proposed and named Pillar Attention Encoder. A pillar attention mechanism is designed to extract the feature data while considering its significance for the perception task. An adaptive feature filter is proposed to adjust the size of the feature data for sharing by considering the importance value of the feature. Experiments are conducted for cooperative object detection from multiple vehicle-based and infrastructure-based LiDAR sensors under various communication conditions. Results demonstrate that our method can successfully handle dynamic communication conditions and improve the mean Average Precision by 10.18% when compared with the state-of-the-art feature encoder. 
    more » « less
  2. null (Ed.)
    A critical aspect of autonomous vehicles (AVs) is the object detection stage, which is increasingly being performed with sensor fusion models: multimodal 3D object detection models which utilize both 2D RGB image data and 3D data from a LIDAR sensor as inputs. In this work, we perform the first study to analyze the robustness of a high-performance, open source sensor fusion model architecture towards adversarial attacks and challenge the popular belief that the use of additional sensors automatically mitigate the risk of adversarial attacks. We find that despite the use of a LIDAR sensor, the model is vulnerable to our purposefully crafted image-based adversarial attacks including disappearance, universal patch, and spoofing. After identifying the underlying reason, we explore some potential defenses and provide some recommendations for improved sensor fusion models. 
    more » « less
  3. Cooperative perception that integrates sensing capabilities from both infrastructure and vehicle perception sensors can greatly benefit the transportation system with respect to safety and data acquisition. In this study, we conduct a preliminary evaluation of such a system by integrating a portable lidar-based infrastructure detection system (namely, Traffic Scanner [TScan]) with a Society of Automotive Engineers (SAE) Level 4 connected and automated vehicle (CAV). Vehicle-to-everything (V2X) communication devices are installed on both the TScan and the CAV to enable real-time message transmission of detection results in the form of SAE J2735 basic safety messages. We validate the concept using a case study, which aims at improving CAV situation awareness and protecting vulnerable road user (VRU) safety. Field testing results demonstrate the safety benefits of cooperative perception from infrastructure sensors in detecting occluded VRUs and helping CAVs to plan safer (i.e., higher post-encroachment time) and smoother (i.e., lower deceleration rates) trajectories. 
    more » « less
  4. Abstract—Object perception plays a fundamental role in Cooperative Driving Automation (CDA) which is regarded as a revolutionary promoter for next-generation transportation systems. However, the vehicle-based perception may suffer from the limited sensing range and occlusion as well as low penetration rates in connectivity. In this paper, we propose Cyber Mobility Mirror (CMM), a next-generation real-world object perception system for 3D object detection, tracking, localization, and reconstruction, to explore the potential of roadside sensors for enabling CDA in the real world. The CMM system consists of six main components: i) the data pre-processor to retrieve and preprocess the raw data; ii) the roadside 3D object detector to generate 3D detection results; iii) the multi-object tracker to identify detected objects; iv) the global locator to generate geo-localization information; v) the mobile-edge-cloud-based communicator to transmit perception information to equipped vehicles, and vi) the onboard advisor to reconstruct and display the real-time traffic conditions. An automatic perception evaluation approach is proposed to support the assessment of data-driven models without human-labeling requirements and a CMM field-operational system is deployed at a real-world intersection to assess the performance of the CMM. Results from field tests demonstrate that our CMM prototype system can achieve 96.99% precision and 83.62% recall for detection and 73.55% ID-recall for tracking. High-fidelity real-time traffic conditions (at the object level) can be geo-localized with a root-mean-square error (RMSE) of 0.69m and 0.33m for lateral and longitudinal direction, respectively, and displayed on the GUI of the equipped vehicle with a frequency of 3 − 4Hz. 
    more » « less
  5. Perception of obstacles remains a critical safety concern for autonomous vehicles. Real-world collisions have shown that the autonomy faults leading to fatal collisions originate from obstacle existence detection. Open source autonomous driving implementations show a perception pipeline with complex interdependent Deep Neural Networks. These networks are not fully verifiable, making them unsuitable for safety-critical tasks. In this work, we present a safety verification of an existing LiDAR based classical obstacle detection algorithm. We establish strict bounds on the capabilities of this obstacle detection algorithm. Given safety standards, such bounds allow for determining LiDAR sensor properties that would reliably satisfy the standards. Such analysis has as yet been unattainable for neural network based perception systems. We provide a rigorous analysis of the obstacle detection s 
    more » « less