Human liver models that are three-dimensional (3D) in architecture are indispensable for compound metabolism/toxicity screening, to model liver diseases for drug discovery, and for cell-based therapies; however, further development of such models is needed to maintain high levels of primary human hepatocyte (PHH) functions for weeks to months. Therefore, here we determined how microscale 3D collagen I presentation and fibroblast interaction affect the longevity of PHHs. High-throughput droplet microfluidics was utilized to generate reproducibly sized (∼300-μm diameter) microtissues containing PHHs encapsulated in collagen I ± supportive fibroblasts, namely, 3T3-J2 murine embryonic fibroblasts or primary human hepatic stellate cells (HSCs); self-assembled spheroids and bulk collagen gels (macrogels) containing PHHs served as controls. Hepatic functions and gene expression were subsequently measured for up to 6 weeks. We found that microtissues placed within multiwell plates rescued PHH functions at 2- to 30-fold higher levels than spheroids or macrogels. Further coating of PHH microtissues with 3T3-J2s led to higher hepatic functions than when the two cell types were either coencapsulated together or when HSCs were used for the coating instead. Importantly, the 3T3-J2-coated PHH microtissues displayed 6+ weeks of relatively stable hepatic gene expression and function at levels similar to freshly thawed PHHs. Lastly, microtissues responded in a clinically relevant manner to drug-mediated cytochrome P450 induction or hepatotoxicity. In conclusion, fibroblast-coated collagen microtissues containing PHHs display high hepatic functions for 6+ weeks and are useful for assessing drug-mediated CYP induction and hepatotoxicity. Ultimately, microtissues may find utility for modeling liver diseases and as building blocks for cell-based therapies.
more »
« less
This content will become publicly available on May 1, 2026
Engineered microtissues to model the effects of dynamic heterotypic cell signaling on iPSC-derived human hepatocyte maturation
In vitro human liver models are indispensable for compound metabolism/toxicity screening, disease modeling, and regenerative medicine. While induced pluripotent stem cell-derived human hepatocyte-like cells (iHeps) mitigate the sourcing limitations with primary human hepatocytes (PHHs), their functional maturity is rate-limiting for application use. During development, immature hepatoblasts interact with different nonparenchymal cell (NPC) types, such as mesenchyme and endothelia, in a spatiotemporal manner to progress through functional maturation. Modeling such interactions in vitro is critical to elucidate the key regulators of iHep maturation. Here, we utilized high-throughput droplet microfluidics to encapsulate iHeps within monodisperse collagen I microgels (Ø ~ 250 μm), which were coated with NPCs to generate ‘microtissues’ placed within microwells in multiwell plates. Embryonic fibroblasts and liver sinusoidal endothelial cells (LSECs) induced the highest level of iHep maturation over 4+ weeks of culture compared to adult hepatic stellate cells (myofibroblastic), liver portal fibroblasts, dermal fibroblasts, and human umbilical vein endothelial cells. Combining iHep microtissues in plates with Transwell inserts containing different NPC types enabled the modeling of dynamic heterotypic signaling on iHep maturation; introducing embryonic fibroblast signaling first, followed by LSECs, led to the highest iHep maturation. Unique cytokine secretion profiles were detected across the top-performing microtissue configurations; stromal-derived factor-1 alpha was validated as one factor that enhanced iHep maturation. Lastly, gene expression patterns and regulatory networks showed adult PHH-like maturation in LSEC/iHep microtissues compared to iHep-only microtissues. Overall, microtissues are useful for elucidating the microenvironmental determinants of iHep maturation and for future use in downstream applications.
more »
« less
- Award ID(s):
- 2134986
- PAR ID:
- 10638070
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Acta Biomaterialia
- Volume:
- 197
- Issue:
- C
- ISSN:
- 1742-7061
- Page Range / eLocation ID:
- 135 to 151
- Subject(s) / Keyword(s):
- Liver Droplet microfluidics Non-parenchymal cells Embryonic fibroblasts Liver sinusoidal endothelial cells iPSC-derived hepatocytes Stem cells
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Owing to significant differences across species in liver functions, in vitro human liver models are used for screening the metabolism and toxicity of compounds, modeling diseases, and cell‐based therapies. However, the extracellular matrix (ECM) scaffold used for such models often does not mimic either the complex composition or the nanofibrous topography of native liver ECM. Thus, here novel methods are developed to electrospin decellularized porcine liver ECM (PLECM) and collagen I into nano‐ and microfibers (≈200–1000 nm) without synthetic polymer blends. Primary human hepatocytes (PHHs) on nanofibers in monoculture or in coculture with nonparenchymal cells (3T3‐J2 embryonic fibroblasts or primary human liver endothelial cells) display higher albumin secretion, urea synthesis, and cytochrome‐P450 1A2, 2A6, 2C9, and 3A4 enzyme activities than on conventionally adsorbed ECM controls. PHH functions are highest on the collagen/PLECM blended nanofibers (up to 34‐fold higher CYP3A4 activity relative to adsorbed ECM) for nearly 7 weeks in the presence of the fibroblasts. In conclusion, it is shown for the first time that ECM composition and topography synergize to enhance and stabilize PHH functions for several weeks in vitro. The nanofiber platform can prove useful for the above applications and to elucidate cell‐ECM interactions in the human liver.more » « less
-
Drug-induced liver injury (DILI) remains a leading cause of drug attrition and acute liver failures, partly due to the inadequacy of animal models to accurately predict human clinical outcomes, which necessitates the utilization of in vitro models of the human liver. However, primary human hepatocytes (PHHs) are in short supply for routine drug screening. In contrast, induced pluripotent stem cells (iPSCs)-derived hepatocyte-like cells (HLCs) are a nearly unlimited cell source but display a fetal-like (versus adult-like) phenotype when differentiated using conventional protocols on tissue culture plastic or glass adsorbed with 2D extracellular matrix (ECM) proteins. Electrospinning can produce porous nanoscale 3D fibers that have a large surface area and present a high density of receptor ligands to modulate cell phenotype. However, the application of electrospinning to generate 3D liver-derived ECM substrates for HLC differentiation remains unexplored. Therefore, here we developed methods to a) electrospin nanofibers of different porosities and diameters using porcine liver ECM (PLECM) with or without type I collagen and b) use these fibers to determine functional modulation in iPSC-derived HLCs while using PHHs as a control cell type relative to conventional adsorbed ECM substrates.more » « less
-
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are immature in their structure and function, limiting their potential in disease modeling, drug screening, and cardiac cellular therapies. Prior studies have demonstrated that coculture of hPSC‐derived CMs with other cardiac cell types, including endothelial cells (ECs), can accelerate CM maturation. To address whether the CM differentiation stage at which ECs are introduced affects CM maturation, the authors coculture hPSC‐derived ECs with hPSC‐derived cardiac progenitor cells (CPCs) and CMs and analyze the molecular and functional attributes of maturation. ECs have a more significant effect on acceleration of maturation when cocultured with CPCs than with CMs. EC coculture with CPCs increases CM size, expression of sarcomere, and ion channel genes and proteins, the presence of intracellular membranous extensions, and chronotropic response compared to monoculture. Maturation is accelerated with an increasing EC:CPC ratio. This study demonstrates that EC incorporation at the CPC stage of CM differentiation expedites CM maturation, leading to cells that may be better suited for in vitro and in vivo applications of hPSC‐derived CMs.more » « less
-
Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for both normal development and numerous pathologies. Systems biology has offered a unique approach to study angiogenesis by profiling tyrosine kinase receptors (RTKs) that regulate angiogenic processes and computationally modeling RTK signaling pathways. Historically, this systems biology approach has been applied on ex vivo angiogenesis assays, however, these assays are difficult to quantify and limited in their potential of temporal analysis. In this study, we adopted a simple two-dimensional angiogenesis assay comprised of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) and examined temporal dynamics of a panel of six RTKs and cell heterogeneity up to 17 days. We observed ~2700 VEGFR1 (vascular endothelial growth factor receptor 1) per cell on 24-h-old cocultured HDF plasma membranes, which do not express VEGFR when cultured alone. We observed 4000–8100 VEGFR2 per cell on cocultured HUVEC plasma membranes throughout endothelial tube formation. We showed steady increase of platelet-derived growth factor receptors (PDGFRs) on cocultured HDF plasma membranes, and more interestingly, 1900–2900 PDGFRβ per plasma membrane were found on HUVECs within the first six hours of coculturing. These quantitative findings will offer us insights into molecular regulation during angiogenesis and help assess in vitro tube formation models and their physiological relevance.more » « less
An official website of the United States government
