skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of alpha-Gal C-disaccharides
The synthesis of C-disaccharides of α-D-galactopyranosyl-(1 → 3)-D-galactopyranose (α-Gal), potential tools for studying the biology of α-Gal glycans, is described. The synthetic strategy, centers on the reaction of two easily available precursors 1,2-O-isopropylidene-D-glyceraldehyde and an α-C-glactosyl-E-crotylboronate, which affords a mixture of two diastereomeric anti-crotylation products. The stereoselectivity of this reaction was controlled with (R)- and (S)-TRIP catalysts, and the appropriate diastereomer was transformed to C-linked disaccharides of α-Gal, in which the aglycone segment comprised O-, C- and S-glycoside entities that can enable glycoconjugate synthesis.  more » « less
Award ID(s):
1900509 1828399
PAR ID:
10638136
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Bioorganic & Medicinal Chemistry
Volume:
112
Issue:
C
ISSN:
0968-0896
Page Range / eLocation ID:
117903
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Isopropyl 3-deoxy-α-D- ribo -hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C 9 H 18 O 5 , (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C5 S C1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D- ribo -hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I) c –(IV) c . Exocyclic hydroxymethyl groups adopt the gauche – gauche ( gg ) conformation (H5 anti to O6) in (I) and (III), and the gauche – trans ( gt ) conformation (C4 anti to O6) in (II) and (IV). The O -glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages. 
    more » « less
  2. null (Ed.)
    In an attempt to refine a CAN-mediated synthesis of 1,3,4,6-tetra- O -acetyl-α- d -glucopyranose (2-OH glucose) we unexpectedly discovered that this reaction proceeds via the intermediacy of glycosyl nitrates. Improved mechanistic understanding of this reaction led to the development of a more versatile synthesis of 2-OH glucose from a variety of precursors. Also demonstrated is the conversion of 2-OH glucose into a variety of building blocks differentially protected at C-2, a position that is generally hard to protect regioselectively in the glucopyranose series. 
    more » « less
  3. Methyl β-lactoside [methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside] monohydrate, C 13 H 24 O 11 ·H 2 O, (I), was obtained via spontaneous transformation of methyl β-lactoside methanol solvate, (II), during air-drying. Cremer–Pople puckering parameters indicate that the β-D-Gal p (β-D-galactopyranosyl) and β-D-Glc p (β-D-glucopyranosyl) rings in (I) adopt slightly distorted 4 C 1 chair conformations, with the former distorted towards a boat form ( B C1,C4 ) and the latter towards a twist-boat form ( O5 S C2 ). Puckering parameters for (I) and (II) indicate that the conformation of the βGal p ring is slightly more affected than the βGlc p ring by the solvomorphism. Conformations of the terminal O -glycosidic linkages in (I) and (II) are virtually identical, whereas those of the internal O -glycosidic linkage show torsion-angle changes of 6° in both C—O bonds. The exocyclic hydroxymethyl group in the βGal p residue adopts a gt conformation (C4′ anti to O6′) in both (I) and (II), whereas that in the βGlc p residue adopts a gg ( gauche – gauche ) conformation (H5 anti to O6) in (II) and a gt ( gauche – trans ) conformation (C4 anti to O6) in (I). The latter conformational change is critical to the solvomorphism in that it allows water to participate in three hydrogen bonds in (I) as opposed to only two hydrogen bonds in (II), potentially producing a more energetically stable structure for (I) than for (II). Visual inspection of the crystalline lattice of (II) reveals channels in which methanol solvent resides and through which solvent might exchange during solvomorphism. These channels are less apparent in the crystalline lattice of (I). 
    more » « less
  4. This communication describes the synthesis of new bis-oxazoline chiral ligands (SPIROX) derived from the C2-symmetric spirocyclic scaffold (SPIROL). The readily available (R,R,R)-SPIROL (2) previously developed by our group was subjected to a three-step sequence that provided key diacid intermediate (R,R,R)-7 in 75% yield. This intermediate was subsequently coupled with (R)- and (S)-phenylglycinols to provide diastereomeric products, the cyclization of which led to two diastereomeric SPIROX ligands (R,R,R,R,R)-3a and (R,R,R,S,S)-3b in 85% and 79% yield, respectively. The complexation of (R,R,R,R,R)-3a and (R,R,R,S,S)-3b with CuCl and Cu(OTf)2 resulted in active catalysts that promoted the asymmetric reaction of α-diazopropionate and phenol. The resultant O–H insertion product was formed in 88% yield, and with excellent selectivity (97% ee) when ligand (R,R,R,R,R)-3a was used. 
    more » « less
  5. null (Ed.)
    The crystal structure of methyl 2-acetamido-2-deoxy-β-D-glycopyranosyl-(1→4)-β-D-mannopyranoside monohydrate, C 15 H 27 NO 11 ·H 2 O, was determined and its structural properties compared to those in a set of mono- and disaccharides bearing N -acetyl side-chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N -acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen-bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cis – trans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter-residue hydrogen bonding and some bond angles in or proximal to β-(1→4) O -glycosidic linkages on linkage torsion angles ϕ and ψ. Hypersurfaces correlating ϕ and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter. 
    more » « less