skip to main content

This content will become publicly available on February 1, 2023

Title: Characterizing Dominant Field-Scale Cropping Sequences for a Potato and Vegetable Growing Region in Central Wisconsin
Crop rotations are known to improve soil health by replenishing lost nutrients, increasing organic matter, improving microbial activity, and reducing disease risk and weed pressure. We characterized the spatial distribution of crops and dominant field-scale cropping sequences from 2008 to 2019 for the Wisconsin Central Sands (WCS) region, a major producer of potato and vegetables in the U.S. The dominant two- and three-year rotations were determined, with an additional focus on assessing regional potato rotation management. Our results suggest corn and soybean are the two most widely planted crops, occurring on 67% and 36% of all agricultural land at least once during the study period. The most frequent two- and three-year crop rotations include corn, soybean, alfalfa, sweet corn, potato, and beans, with continuous corn being the most dominant two- and three-year rotations (13.2% and 8.5% of agricultural land, respectively). While four- and five-year rotations for potato are recommended to combat pest and disease pressure, 23.2% and 65.9% of potato fields returned to that crop in rotation after two and three years, respectively. Furthermore, 5.6% of potato fields were planted continuously with that crop. Given potato’s high nitrogen (N) fertilizer requirements, the prevalence of sandy soils, and ongoing water quality more » issues, adopting more widespread use of four- or five-year rotations of potato with crops that require zero or less N fertilizer could reduce groundwater nitrate concentrations and improve water quality. « less
Authors:
;
Award ID(s):
1855996
Publication Date:
NSF-PAR ID:
10334772
Journal Name:
Land
Volume:
11
Issue:
2
Page Range or eLocation-ID:
273
ISSN:
2073-445X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016More>>
  2. Expanding biofuel production is expected to accelerate the conversion of unmanaged marginal lands to meet biomass feedstock needs. Greenhouse gas production during conversion jeopardizes ensuing climate benefits, but most research to date has focused only on conversion to annual crops and only following tillage. Here we report the global warming impact of converting USDA Conservation Reserve Program (CRP) grasslands to three types of bioenergy crops using no‐till (NT) versus conventional tillage (CT). In three CRP fields planted to continuous corn, switchgrass, or restored prairie we established replicated NT and CT plots. For the two years following an initial soybean yearmore »in all fields, we found that, on average, NT conversion reduced nitrous oxide (N2O) emissions by 50% and carbon dioxide (CO2) emissions by 20% compared to CT conversion. Differences were higher in year 1 than in year 2 in the continuous corn field, and in the two perennial systems the differences disappeared after year 1. In all fields net CO2 emissions (as measured by eddy covariance) were positive for the first two years following CT establishment, but following NT establishment net CO2 emissions were close to zero or negative, indicating net C sequestration. Overall, NT improved the global warming impact of biofuel crop establishment following CRP conversion by over 20‐fold compared to CT (‐6.01 Mg CO2e ha−1 yr−1 for NT vs. ‐0.25 Mg CO2e ha−1 yr−1 for CT, on average). We also found that IPCC estimates of N2O emissions (as measured by static chambers) greatly underestimated actual emissions for converted fields regardless of tillage. Policies should encourage adoption of NT for converting marginal grasslands to perennial bioenergy crops in order to reduce carbon debt and maximize climate benefits.« less
  3. With population growth and resource depletion, maximizing the efficiency of soybean (Glycine max [L.] Merr.) and rice (Oryza sativa L.) cropping systems is urgently needed. The goal of this study was to shed light on precise irrigation amounts and optimal agronomic practices via simulating rice–rice and soybean–rice crop rotations in the Agricultural Policy/Environmental eXtender (APEX) model. The APEX model was calibrated using observations from five fields under soybean–rice rotation in Arkansas from 2017 to 2019 and remote sensing leaf area index (LAI) values to assess modeled vegetation growth. Different irrigation practices were assessed, including conventional flooding (CVF), known as cascade,more »multiple inlet rice irrigation with polypipe (MIRI), and furrow irrigation (FIR). The amount of water used differed between fields, following each field’s measured or estimated input. Moreover, fields were managed with either continuous flooding (CF) or alternate wetting and drying (AWD) irrigation. Two 20-year scenarios were simulated to test yield changes: (1) between rice–rice and soybean–rice rotation and (2) under reduced irrigation amounts. After calibration with crop yield and LAI, the modeled LAI correlated to the observations with R2 values greater than 0.66, and the percent bias (PBIAS) values were within 32%. The PBIAS and percent difference for modeled versus observed yield were within 2.5% for rice and 15% for soybean. Contrary to expectation, the rice–rice and soybean–rice rotation yields were not statistically significant. The results of the reduced irrigation scenario differed by field, but reducing irrigation beyond 20% from the original amount input by the farmers significantly reduced yields in all fields, except for one field that was over-irrigated.« less
  4. With over 65% of agronomic crops under no-till in Pennsylvania, herbicides are relied on for weed management. To lessen the environmental impact and selection pressure for herbicide resistance, we conducted a nine-year experiment to test herbicide reduction practices in a dairy crop rotation at Rock Springs, PA. The rotation included soybean (Glycine max L.) – corn (Zea mays L.) - 3-year alfalfa (Medicago sativa L.) - canola (Brassica napus L.). The following practices were used to reduce herbicide inputs: i. banding residual herbicides over corn and soybean rows and using high-residue inter-row cultivation; ii. seeding a small grain companion cropmore »with alfalfa; iii. plowing once in six years to terminate the perennial forage. These practices were compared with standard herbicide-based weed management (SH) in continuous no-till. We hypothesized: i. There would be more weed biomass in the reduced herbicide treatment (RH), ii. leading to more weeds in RH over time, but iii. the added weed pressure would not affect yield iv. or differences in net return. We sampled weed biomass in soybean, corn, and the first two forage years. In corn and soybean, weed biomass was often greater in RH than SH and increased over the years in the RH treatments. In the forage, weed biomass did not always differ between treatments. Yield and differences in net return were similar in most crops and years. Results suggest that weed management with reduced herbicide inputs supplemented with an integrated approach can be effective but may lead to more weeds over time.« less
  5. Abstract With climate change threatening agricultural productivity and global food demand increasing, it is important to better understand which farm management practices will maximize crop yields in various climatic conditions. To assess the effectiveness of agricultural practices, researchers often turn to randomized field experiments, which are reliable for identifying causal effects but are often limited in scope and therefore lack external validity. Recently, researchers have also leveraged large observational datasets from satellites and other sources, which can lead to conclusions biased by confounding variables or systematic measurement errors. Because experimental and observational datasets have complementary strengths, in this paper wemore »propose a method that uses a combination of experimental and observational data in the same analysis. As a case study, we focus on the causal effect of crop rotation on corn (maize) and soybean yields in the Midwestern United States. We find that, in terms of root mean squared error, our hybrid method performs 13% better than using experimental data alone and 26% better than using the observational data alone in the task of predicting the effect of rotation on corn yield at held-out experimental sites. Further, the causal estimates based on our method suggest that benefits of crop rotations on corn yield are lower in years and locations with high temperatures whereas the benefits of crop rotations on soybean yield are higher in years and locations with high temperatures. In particular, we estimated that the benefit of rotation on corn yields (and soybean yields) was 0.85 t ha −1 (0.24 t ha −1 ) on average for the top quintile of temperatures, 1.03 t ha −1 (0.21 t ha −1 ) on average for the whole dataset, and 1.19 t ha −1 (0.16 t ha −1 ) on average for the bottom quintile of temperatures. This association between temperatures and rotation benefits is consistent with the hypothesis that the benefit of the corn-soybean rotation on soybean yield is largely driven by pest pressure reductions while the benefit of the corn-soybean rotation on corn yields is largely driven by nitrogen availability.« less