Summary Drought and the availability of nitrate, the predominant source of nitrogen (N) in agriculture, are major factors limiting plant growth and crop productivity. The dissection of the transcriptional networks' components integrating droght stress and nitrate responses provides valuable insights into how plants effectively balance stress response with growth programs. Recent evidence inArabidopsis thalianaindicates that transcription factors (TFs) involved in abscisic acid (ABA) signaling affect N metabolism and nitrate responses, and reciprocally, components of nitrate signaling might affect ABA and drought gene responses. Advances in understanding regulatory circuits of nitrate and drought crosstalk in plant tissues empower targeted genetic modifications to enhance plant development and stress resistance, critical traits for optimizing crop yield and promoting sustainable agriculture.
more »
« less
Nitrogen sensing and regulatory networks: it's about time and space
Abstract A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its “hit-and-run” mode of target gene regulation, and temporal transcriptional cascade identified by “network walking.” Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.
more »
« less
- Award ID(s):
- 1840761
- PAR ID:
- 10638337
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The Plant Cell
- Volume:
- 36
- Issue:
- 5
- ISSN:
- 1040-4651
- Page Range / eLocation ID:
- 1482 to 1503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Recognition of environmental cues is essential for the survival of all organisms. Transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory- (ORNs), thermo-, and hygro-sensory neurons at an early developmental and adult stage using single-cell and single-nucleus RNA sequencing. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using receptor expression and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuron types across multiple developmental stages. We found that cell-type-specific transcriptomes partly reflected axon trajectory choices in development and sensory modality in adults. We uncovered stage-specific genes that could regulate the wiring and sensory responses of distinct ORN types. Collectively, our data reveal transcriptomic features of sensory neuron biology and provide a resource for future studies of their development and physiology.more » « less
-
Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca 2+ ) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell–cell communication. Special emphasis is given to the recent discussion of GLRs’ atomic structures. Along with functional assays, a structural view of GLRs’ molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs—which propose the involvement of genes from all clades of Arabidopsis thaliana in ways not previously observed—are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with ( a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein–protein interactions, and ( b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.more » « less
-
Abstract Glutaredoxins (GRXs) are small oxidoreductase enzymes that can reduce disulfide bonds in target proteins. The class III GRX gene family is unique to land plants, andArabidopsis thalianahas 21 class III GRXs, which remain largely uncharacterized. About 80% ofA. thalianaclass III GRXs are transcriptionally regulated by nitrate, and several recent studies have suggested roles for these GRXs in nitrogen signaling. Our objective was to functionally characterize two nitrate‐induced GRX genes,AtGRXS5andAtGRXS8, defining their roles in signaling and development in theA. thalianaroot. We demonstrated thatAtGRXS5andAtGRXS8are primarily expressed in root and shoot vasculature (phloem), and that the corresponding GRX proteins display nucleo‐cytosolic subcellular localization. Ectopic expression ofAtGRXS8in transgenic plants caused major alterations in root system architecture: Normal primary root development, but a near absence of lateral roots. RNA sequencing demonstrated that the roots ofAtGRXS8‐overexpressing plants show strongly reduced transcript abundance for many primary nitrate response genes, including the major high‐affinity nitrate transporters. Correspondingly, high‐affinity nitrate uptake and the transport of nitrate from roots to shoots are compromised inAtGRXS8‐overexpressing plants. Finally, we demonstrated that the AtGRXS8 protein can physically interact with the TGA1 and TGA4 transcription factors, which are central regulators of early transcriptional responses to nitrate inA. thalianaroots. Overall, these results suggest thatAtGRXS8acts to quench both transcriptional and developmental aspects of primary nitrate response, potentially by interfering with the activity of the TGA1 and TGA4 transcription factors.more » « less
-
Abstract Plant roots dynamically respond to nitrogen availability by executing a signaling and transcriptional cascade resulting in altered plant growth that is optimized for nutrient uptake. The NIN-LIKE PROTEIN 7 (NLP7) transcription factor senses nitrogen and, along with its paralog NLP6, partially coordinates transcriptional responses. While the post-translational regulation of NLP6 and NLP7 is well established, their upstream transcriptional regulation remains understudied in Arabidopsis (Arabidopsis thaliana) and other plant species. Here, we dissected a known sub-circuit upstream of NLP6 and NLP7 in Arabidopsis, which was predicted to contain multiple multi-node feedforward loops suggestive of an optimized design principle of nitrogen transcriptional regulation. This sub-circuit comprises AUXIN RESPONSE FACTOR 18 (ARF18), ARF9, DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 26 (DREB26), Arabidopsis NAC-DOMAIN CONTAINING PROTEIN 32 (ANAC032), NLP6 and NLP7 and their regulation of NITRITE REDUCTASE 1 (NIR1). Conservation and divergence of this circuit and its influence on nitrogen-dependent root system architecture were similarly assessed in tomato (Solanum lycopersicum). The specific binding sites of these factors within their respective promoters and their putative cis-regulatory architectures were identified. The direct or indirect nature of these interactions was validated in planta. The resulting models were genetically validated in varying concentrations of available nitrate by measuring the transcriptional output of the network revealing rewiring of nitrogen regulation across distinct plant lineages.more » « less
An official website of the United States government

