Anthropogenic activities are responsible for greenhouse gas emissions, causing extreme events like soil erosion, droughts, floods, forest fires and tornadoes. Fossil fuel consumption produces CO2, and trapping heat is the major reason for a rapid increase in global temperature, and electricity generation is responsible for 25% of greenhouse gas emissions. Fossil fuel consumption, CO2 emissions and their adverse impact have become the focus of efforts to mitigate climate change vulnerability. This study explores empirical determinants of vulnerability to climate change such as ecosystem, food, health and infrastructure. The sustainable use of energy is necessary for development, and a source of response to climate change. The present study focuses on renewable energy consumption to determine climate vulnerability in G7 countries between 1995 and 2019. The panel ARDL approach showed that the renewable to non-renewable energy mix showed a quadratic effect on vulnerability, whereby a minimum threshold of renewable energy is required to witness a reduction in food, health and infrastructure vulnerability. Other results indicate that trade openness and development expenditures reduce health vulnerability. Development expenditures also decrease ecosystem vulnerability, while trade openness increases it. However, both of these variables increase infrastructure vulnerability. Avoiding severe food and water crises requires investment to tackle climate change, conserve energy and water resources, reform global trade and food markets, and adapting and adopting climate-resilient responses to change.
more »
« less
This content will become publicly available on September 1, 2026
Carbon, Climate, and Collapse: Coupling Climate Feedbacks and Resource Dynamics to Predict Societal Collapse
Anthropogenic climate change threatens production of essential natural resources, including food, fiber, and fresh water, and provisioning of ecosystem services such as carbon sequestration, increasing the risk of societal collapse. The Human and Nature Dynamics (HANDY) model simulates the effect of resource overexploitation on societal collapse but lacks representation of feedbacks between climate change and resource regeneration in ecological systems. We extend the HANDY model by integrating models of climate change and ecological function to examine the risk of societal collapse. We conducted a sensitivity analysis of our expanded model by systematically varying key parameters to examine the range of plausible socio-ecological conditions and evaluate model uncertainty. We find that lowered greenhouse gas emissions and resilient ecosystems can delay societal collapse by up to approximately 500 years, but that any scenario with greater than net-zero greenhouse gas emissions ultimately leads to societal collapse driven by climate-induced loss of ecosystem function. Reductions in greenhouse gas emissions are the most effective intervention to delay or prevent societal collapse, followed by the conservation and management of resilient ecological systems to sequester atmospheric carbon.
more »
« less
- Award ID(s):
- 2436120
- PAR ID:
- 10638473
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Systems
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2079-8954
- Page Range / eLocation ID:
- 727
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Agriculture’s global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture’s environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change–reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products.more » « less
-
Local-scale human–environment relationships are fundamental to energy sovereignty, and in many contexts, Indigenous ecological knowledge (IEK) is integral to such relationships. For example, Tribal leaders in southwestern USA identify firewood harvested from local woodlands as vital. For Diné people, firewood is central to cultural and physical survival and offers a reliable fuel for energy embedded in local ecological systems. However, there are two acute problems: first, climate change-induced drought will diminish local sources of firewood; second, policies aimed at reducing reliance on greenhouse-gas-emitting energy sources may limit alternatives like coal for home use, thereby increasing firewood demand to unsustainable levels. We develop an agent-based model trained with ecological and community-generated ethnographic data to assess the future of firewood availability under varying climate, demand and IEK scenarios. We find that the long-term sustainability of Indigenous firewood harvesting is maximized under low-emissions and low-to-moderate demand scenarios when harvesters adhere to IEK guidance. Results show how Indigenous ecological practices and resulting ecological legacies maintain resilient socio-environmental systems. Insights offered focus on creating energy equity for Indigenous people and broad lessons about how Indigenous knowledge is integral for adapting to climate change. This article is part of the theme issue ‘Climate change adaptation needs a science of culture’.more » « less
-
Abstract Nature-based Climate Solutions are landscape stewardship techniques to reduce greenhouse gas emissions and increase soil or biomass carbon sequestration. These mitigation approaches to climate change present an opportunity to supplement energy sector decarbonization and provide co-benefits in terms of ecosystem services and landscape productivity. The biological engineering profession must be involved in the research and implementation of these solutions—developing new tools to aid in decision-making, methods to optimize across different objectives, and new messaging frameworks to assist in prioritizing among different options. Furthermore, the biological engineering curriculum should be redesigned to reflect the needs of carbon-based landscape management. While doing so, the biological engineering community has an opportunity to embed justice, equity, diversity, and inclusion within both the classroom and the profession. Together these transformations will enhance our capacity to use sustainable landscape management as an active tool to mitigate the risks of climate change.more » « less
-
Cattle farming is a major source of global food production and livelihoods that is being impacted by climate change. However, despite numerous studies reporting local-scale heat impacts, quantifying the global risk of heat stress to cattle from climate change remains challenging. We conducted a global synthesis of documented heat stress for cattle using 164 records to identify temperature-humidity conditions associated with decreased production and increased mortality, then projected how future greenhouse gas emissions and land-use decisions will limit or exacerbate heat stress, and mapped this globally. The median threshold for the onset of negative impacts on cattle was a temperature-humidity index of 68.8 (95% C.I.: 67.3–70.7). Currently, almost 80% of cattle globally are exposed to conditions exceeding this threshold for at least 30 days a year. For global warming above 4°C, heat stress of over 180 days per year emerges in temperate regions, and year-round heat stress expands across all tropical regions by 2100. Limiting global warming to 2°C, limits expansion of 180 days of heat stress to sub-tropical regions. In all scenarios, severity of heat stress increases most in tropical regions, reducing global milk yields. Future land-use decisions are an important driver of risk. Under a low environmental protection scenario (SSP3-RCP7.0), the greatest expansion of cattle farming is projected for tropical regions (especially Amazon, Congo Basin, and India), where heat stress is projected to increase the most. This would expose over 500 million more cattle in these regions to severe heat risk by 2090 compared to 2010. A less resource-intensive and higher environmental protection scenario (SSP1-RCP2.6) reduces heat risk for cattle by at least 50% in Asia, 63% in South America, and 84% in Africa. These results highlight how societal choices that expand cattle production in tropical forest regions are unsustainable, both worsening climate change and exposing hundreds of millions more cattle to large increases in severe, year-round heat stress.more » « less
An official website of the United States government
