This content will become publicly available on July 16, 2026
Surfaces, silica and semivolatile organics—limonene uptake and desorption indoors and outdoors
Adsorption of organics on surfaces is important in both outdoor and indoor environments. Surfaces can serve as sinks for gas-phase species, act as reservoirs by emitting previously partitioned organics back into the gas phase, and can facilitate heterogeneous chemistry. We report here studies of the uptake and desorption energetics of gas-phase limonene, a volatile and widely-distributed monoterpene, on solid silica nanoparticles using a unique apparatus that allows for temperature programmed desorption (TPD) measurements of surface binding energies as well as Knudsen cell gas uptake measurements. A multiphase kinetic model was applied to these data to provide additional molecular-level understanding of the processes involved. TPD experiments yielded an average desorption energy of 47.5 ± 8.2 kJ mol-1 (±1s, sample standard deviation), the first direct experimental measurement of this parameter over a broad temperature range (150–320 K). Initial net uptake coefficients (0,net) range from (1.7 ± 0.3) ×10-3 (±1s) at 210 K to (2.3 ± 0.4) ×10-4 (±1s) at 250 K, reflecting increased rates of desorption with an increase in temperature combined with increased rates of diffusion and re-adsorption within the pores between adjacent silica nanoparticles. Effective Langmuir constants, which also reflect the effects of pore diffusion and re-adsorption, were determined from the uptake data and vary from (1.8–0.3)×10-13 cm3 molecule-1 over the same temperature range. These results are in excellent agreement with previous studies around room temperature and with theoretical calculations of the energetics of the limonene-silica interaction. The strong attraction between limonene and the polar silica surface shows the importance of including such interactions in models of the atmospheric fates of terpenes both indoors and outdoors.
more »
« less
- Award ID(s):
- 2030175
- PAR ID:
- 10638586
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Environmental Science: Processes & Impacts
- Volume:
- 27
- Issue:
- 7
- ISSN:
- 2050-7887
- Page Range / eLocation ID:
- 1902 to 1913
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Understanding impacts of secondary organic aerosol (SOA) in air requires a molecular-level understanding of particle growth via interactions between gases and particle surfaces. The interactions of three gaseous organic nitrates with selected organic substrates were measured at 296 K using attenuated total reflection Fourier transform infrared spectroscopy. The organic substrates included a long chain alkane (triacontane, TC), a keto-acid (pinonic acid, PA), an amorphous ester oligomer (poly(ethylene adipate) di-hydroxy terminated, PEA), and laboratory-generated SOA from α-pinene ozonolysis. There was no uptake of the organic nitrates on the non-polar TC substrate, but significant uptake occurred on PEA, PA, and α-pinene SOA. Net uptake coefficients ( γ ) at the shortest reaction times accessible in these experiments ranged from 3 × 10 −4 to 9 × 10 −6 and partition coefficients ( K ) from 1 × 10 7 to 9 × 10 4 . Trends in γ did not quantitatively follow trends in K , suggesting that the intermolecular forces involved in gas–surface interactions are not the same as those in the bulk, which is supported by theoretical calculations. Kinetic modeling showed that nitrates diffused throughout the organic films over several minutes, and that the bulk diffusion coefficients evolved as uptake/desorption occurred. A plasticizing effect occurred upon incorporation of the organic nitrates, whereas desorption caused decreases in diffusion coefficients in the upper layers, suggesting a crusting effect. Accurate predictions of particle growth in the atmosphere will require knowledge of uptake coefficients, which are likely to be several orders of magnitude less than one, and of the intermolecular interactions of gases with particle surfaces as well as with the particle bulk.more » « less
-
Abstract The identification of silicon‐substituted, complex organics carrying multiple functional groups by classical infrared spectroscopy is challenging because the group frequencies of functional groups often overlap. Photoionization (PI) reflectron time‐of‐fight mass spectrometry (ReTOF‐MS) in combination with temperature‐programmed desorption (TPD) holds certain advantages because molecules are identified after sublimation from the matrix into in the gas phase based on distinct ionization energies and sublimation temperatures. In this study, we reveal the detection of 1‐silaglycolaldehyde (HSiOCH2OH), 2‐sila‐acetic acid (H3SiCOOH), and 1,2‐disila‐acetaldehyde (H3SiSiHO)—the silicon analogues of the well‐known glycolaldehyde (HCOCH2OH), acetic acid (H3CCOOH), and acetaldehyde (H3CCHO), in the gas phase after preparation in silane (SiH4)–carbon dioxide ices exposed to energetic electrons and subliming the neutral reaction products formed within the ices into the gas phase.more » « less
-
This second paper in a series of two describes the chirped-pulse ice apparatus that permits the detection of buffer gas cooled molecules desorbed from an energetically processed ice using broadband mm-wave rotational spectroscopy. Here, we detail the lower ice stage developed to generate ices at 4 K, which can then undergo energetic processing via UV/VUV photons or high-energy electrons and which ultimately enter the gas phase via temperature-programmed desorption (TPD). Over the course of TPD, the lower ice stage is interfaced with a buffer gas cooling cell that allows for sensitive detection via chirped-pulse rotational spectroscopy in the 60–90 GHz regime. In addition to a detailed description of the ice component of this apparatus, we show proof-of-principle experiments demonstrating the detection of H2CO products formed through irradiation of neat methanol ices or 1:1 CO + CH4 mixed ices.more » « less
-
Abstract Nucleation and subsequent growth of new aerosol particles in the atmosphere is a major source of cloud condensation nuclei and persistent large uncertainty in climate models. Newly formed particles need to grow rapidly to avoid scavenging by pre-existing aerosols and become relevant for the climate and air quality. In the continental atmosphere, condensation of oxygenated organic molecules is often the dominant mechanism for rapid growth. However, the huge variety of different organics present in the continental boundary layer makes it challenging to predict nanoparticle growth rates from gas-phase measurements. Moreover, recent studies have shown that growth rates of nanoparticles derived from particle size distribution measurements show surprisingly little dependency on potentially condensable vapors observed in the gas phase. Here, we show that the observed nanoparticle growth rates in the sub-10 nm size range can be predicted in the boreal forest only for springtime conditions, even with state-of-the-art mass spectrometers and particle sizing instruments. We find that, especially under warmer conditions, observed growth is slower than predicted from gas-phase condensation. We show that only a combination of simple particle-phase reaction schemes, phase separation due to non-ideal solution behavior, or particle-phase diffusion limitations can explain the observed lower growth rates. Our analysis provides first insights as to why atmospheric nanoparticle growth rates above 10 nm h−1are rarely observed. Ultimately, a reduction of experimental uncertainties and improved sub-10 nm particle hygroscopicity and chemical composition measurements are needed to further investigate the occurrence of such a growth rate-limiting process.more » « less
An official website of the United States government
