skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 20, 2026

Title: Estimating within-stride metabolic cost from stride-average data using autoencoders and expander networks
IntroductionBiomechanical changes due to aging increase the oxygen consumption of walking by over 30%. When this is coupled with reduced oxygen uptake capacity, the ability to sustain walking becomes compromised. This reduced physical activity and mobility can lead to further physical degeneration and mortality. Unfortunately, the underlying reasons for the increased metabolic cost are still inadequately understood. While motion capture systems can measure signals with high temporal resolution, it is impossible to directly characterize the fluctuation of metabolic cost throughout the gait cycle. MethodsTo address this issue, this research focuses on computing the metabolic cost time series from the mean value using two neural-network-based approaches: autoencoders (AEs) and expanders. For the AEs, the encoders are designed to compress the input time series down to their mean value, and the decoder expands those values into the time series. After training, the decoder is extracted and applied to mean metabolic cost values to compute the time series. A second approach leverages an expander to map the mean values to the time series without an encoder. The networks are trained using ten different metabolic cost models generated by a computational walking model that simulates the gait cycle subjected to 35 different robotic perturbations without using experimental input data. The networks are validated using the estimated metabolic costs for the unperturbed gait cycle. ResultsThe investigation found that AEs without tied weights and the expanders performed best using nonlinear activation functions, while the AEs with tied weights performed best with linear activation functions. Unexpectedly, the results show that the expanders outperform the AEs. DiscussionA limitation of this research is the reliance on time series for the initial training. Future efforts will focus on developing methods that overcome this issue. Improved methods for estimating within-stride fluctuations in metabolic cost have the potential of improving rehabilitation and assistive devices by targeting the gait phases with increased metabolic cost. This research could also be applied to expand sparse measurements to locations or times that were not measured explicitly. This application would reduce the number of measurement points required to capture the response of a system.  more » « less
Award ID(s):
2203144
PAR ID:
10638624
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
13
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Metabolic cost greatly impacts trade-offs within a variety of human movements. Standard respiratory measurements only obtain the mean cost of a movement cycle, preventing understanding of the contributions of different phases in, for example, walking. We present a method that estimates the within-stride cost of walking by leveraging measurements under different force perturbations. The method reproduces time series with greater consistency (r = 0.55 and 0.80 in two datasets) than previous model-based estimations (r = 0.29). This perturbation-based method reveals how the cost of push-off (10%) is much smaller than would be expected from positive mechanical work (~ 70%). This work elucidates the costliest phases during walking, offering new targets for assistive devices and rehabilitation strategies. 
    more » « less
  2. Background:Mild cognitive impairment (MCI) can be an early sign of Alzheimer’s disease and other types of dementia detectable through gait analysis. Curve walking, which demands greater cognitive and motor skills, may be more sensitive in MCI detection than straight walking. However, few studies have compared gait performance in older adults with and without MCI in these conditions. Objective:To compare the capability of curve and straight walking tests for the detection of MCI among older adults. Methods:We employed a Kinect v.2 camera to record the gait of 55 older adults (30 healthy controls, 25 with MCI) during single-task straight and curve walking tests. We examined 50 gait markers and conducted statistical analyses to compare groups and conditions. The trail was approved with protocol No. IR.SEMUMS.REC.1398.237 by the ethics committee of Semnan University of Medical Sciences in Iran. Results:Older adults with MCI exhibited more compromised gait performance, particularly during curve walking. Curve walking outperformed straight walking in MCI detection, with several gait markers showing significant differences between healthy controls and MCI patients. These markers encompass average velocity, cadence, temporal markers (e.g., gait cycle subphase durations), spatial markers (e.g., foot position changes during gait subphases), and spatiotemporal markers (e.g., step and stride velocities). Conclusions:Our study suggests curve walking as a more informative and challenging test for MCI detection among older adults, facilitating early diagnosis using non-invasive, cost-effective tools like the Kinect v.2 camera, complementing cognitive assessments in early diagnosis, and tracking MCI progression to dementia. 
    more » « less
  3. IntroductionGait automaticity refers to the ability to walk with minimal recruitment of attentional networks typically mediated through the prefrontal cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources during walking) is common with aging, contributing to an increased risk of falls and reduced quality of life. A common assessment of gait automaticity involves examining PFC activation using near-infrared spectroscopy (fNIRS) during dual-task (DT) paradigms, such as walking while performing a cognitive task. However, neither PFC activity nor task performance in isolation measures automaticity accurately. For example, greater PFC activation could be interpreted as worse gait automaticity when accompanied by poorer DT performance, but when accompanied by better DT performance, it could be seen as successful compensation. Thus, there is a need to incorporate behavioral performance and PFC measurements for a more comprehensive evaluation of gait automaticity. To address this need, we propose a novel attentional gait index as an analytical approach that combines changes in PFC activity with changes in DT performance to quantify automaticity, where a reduction in automaticity will be reflected as an increased need for attentional gait control (i.e., larger index). MethodsThe index was validated in 173 participants (≥65 y/o) who completed DTs with two levels of difficulty while PFC activation was recorded with fNIRS. The two DTs consisted of reciting every other letter of the alphabet while walking over either an even or uneven surface. ResultsAs DT difficulty increases, more participants showed the anticipated increase in the attentional control of gait (i.e., less automaticity) as measured by the novel index compared to PFC activation. Furthermore, when comparing across individuals, lower cognitive function was related to higher attentional gait index, but not PFC activation or DT performance. ConclusionThe proposed index better quantified the differences in attentional control of gait between tasks and individuals by providing a unified measure that includes both brain activation and performance. This new approach opens exciting possibilities to assess participant-specific deficits and compare rehabilitation outcomes from gait automaticity interventions. 
    more » « less
  4. Abstract BackgroundSoft robotic exosuits can provide partial dorsiflexor and plantarflexor support in parallel with paretic muscles to improve poststroke walking capacity. Previous results indicate that baseline walking ability may impact a user’s ability to leverage the exosuit assistance, while the effects on continuous walking, walking stability, and muscle slacking have not been evaluated. Here we evaluated the effects of a portable ankle exosuit during continuous comfortable overground walking in 19 individuals with chronic hemiparesis. We also compared two speed-based subgroups (threshold: 0.93 m/s) to address poststroke heterogeneity. MethodsWe refined a previously developed portable lightweight soft exosuit to support continuous overground walking. We compared five minutes of continuous walking in a laboratory with the exosuit to walking without the exosuit in terms of ground clearance, foot landing and propulsion, as well as the energy cost of transport, walking stability and plantarflexor muscle slacking. ResultsExosuit assistance was associated with improvements in the targeted gait impairments: 22% increase in ground clearance during swing, 5° increase in foot-to-floor angle at initial contact, and 22% increase in the center-of-mass propulsion during push-off. The improvements in propulsion and foot landing contributed to a 6.7% (0.04 m/s) increase in walking speed (R2 = 0.82). This enhancement in gait function was achieved without deterioration in muscle effort, stability or cost of transport. Subgroup analyses revealed that all individuals profited from ground clearance support, but slower individuals leveraged plantarflexor assistance to improve propulsion by 35% to walk 13% faster, while faster individuals did not change either. ConclusionsThe immediate restorative benefits of the exosuit presented here underline its promise for rehabilitative gait training in poststroke individuals. 
    more » « less
  5. Humans can inherently adapt their gait pattern in a way that minimizes the metabolic cost of transport, or walking economy, within a few steps, which is faster than any known direct physiological sensor of metabolic energy. Instead, walking economy may be indirectly sensed through mechanoreceptors that correlate with the metabolic cost per step to make such gait adaptations. We tested whether velocity feedback from tibialis anterior (TA) muscle fascicles during the early stance phase of walking could potentially act to indirectly sense walking economy. As participants walked within a range of steady-state speeds and step frequencies, we observed that TA fascicles lengthen on almost every step. Moreover, the average peak fascicle velocity experienced during lengthening reflected the metabolic cost of transport of the given walking condition. We observed that the peak TA muscle activation occurred earlier than could be explained by a short latency reflex response. The activation of the TA muscle just prior to heel strike may serve as a prediction of the magnitude of the ground collision and the associated energy exchange. In this scenario, any unexpected length change experienced by the TA fascicle would serve as an error signal to the nervous system and provide additional information about energy lost per step. Our work helps provide a biomechanical framework to understand the possible neural mechanisms underlying the rapid optimization of walking economy. 
    more » « less