skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel attentional gait index reveals a cognitive ability-related decline in gait automaticity during dual-task walking
IntroductionGait automaticity refers to the ability to walk with minimal recruitment of attentional networks typically mediated through the prefrontal cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources during walking) is common with aging, contributing to an increased risk of falls and reduced quality of life. A common assessment of gait automaticity involves examining PFC activation using near-infrared spectroscopy (fNIRS) during dual-task (DT) paradigms, such as walking while performing a cognitive task. However, neither PFC activity nor task performance in isolation measures automaticity accurately. For example, greater PFC activation could be interpreted as worse gait automaticity when accompanied by poorer DT performance, but when accompanied by better DT performance, it could be seen as successful compensation. Thus, there is a need to incorporate behavioral performance and PFC measurements for a more comprehensive evaluation of gait automaticity. To address this need, we propose a novel attentional gait index as an analytical approach that combines changes in PFC activity with changes in DT performance to quantify automaticity, where a reduction in automaticity will be reflected as an increased need for attentional gait control (i.e., larger index). MethodsThe index was validated in 173 participants (≥65 y/o) who completed DTs with two levels of difficulty while PFC activation was recorded with fNIRS. The two DTs consisted of reciting every other letter of the alphabet while walking over either an even or uneven surface. ResultsAs DT difficulty increases, more participants showed the anticipated increase in the attentional control of gait (i.e., less automaticity) as measured by the novel index compared to PFC activation. Furthermore, when comparing across individuals, lower cognitive function was related to higher attentional gait index, but not PFC activation or DT performance. ConclusionThe proposed index better quantified the differences in attentional control of gait between tasks and individuals by providing a unified measure that includes both brain activation and performance. This new approach opens exciting possibilities to assess participant-specific deficits and compare rehabilitation outcomes from gait automaticity interventions.  more » « less
Award ID(s):
1847891
PAR ID:
10521946
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers Media S.A.
Date Published:
Journal Name:
Frontiers in Aging Neuroscience
Volume:
15
ISSN:
1663-4365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background:Mild cognitive impairment (MCI) can be an early sign of Alzheimer’s disease and other types of dementia detectable through gait analysis. Curve walking, which demands greater cognitive and motor skills, may be more sensitive in MCI detection than straight walking. However, few studies have compared gait performance in older adults with and without MCI in these conditions. Objective:To compare the capability of curve and straight walking tests for the detection of MCI among older adults. Methods:We employed a Kinect v.2 camera to record the gait of 55 older adults (30 healthy controls, 25 with MCI) during single-task straight and curve walking tests. We examined 50 gait markers and conducted statistical analyses to compare groups and conditions. The trail was approved with protocol No. IR.SEMUMS.REC.1398.237 by the ethics committee of Semnan University of Medical Sciences in Iran. Results:Older adults with MCI exhibited more compromised gait performance, particularly during curve walking. Curve walking outperformed straight walking in MCI detection, with several gait markers showing significant differences between healthy controls and MCI patients. These markers encompass average velocity, cadence, temporal markers (e.g., gait cycle subphase durations), spatial markers (e.g., foot position changes during gait subphases), and spatiotemporal markers (e.g., step and stride velocities). Conclusions:Our study suggests curve walking as a more informative and challenging test for MCI detection among older adults, facilitating early diagnosis using non-invasive, cost-effective tools like the Kinect v.2 camera, complementing cognitive assessments in early diagnosis, and tracking MCI progression to dementia. 
    more » « less
  2. IntroductionAlzheimer's disease and related disorders (ADRD) progressively impair cognitive function, prompting the need for early detection to mitigate its impact. Mild Cognitive Impairment (MCI) may signal an early cognitive decline due to ADRD. Thus, developing an accessible, non-invasive method for detecting MCI is vital for initiating early interventions to prevent severe cognitive deterioration. MethodsThis study explores the utility of analyzing gait patterns, a fundamental aspect of human motor behavior, on straight and oval paths for diagnosing MCI. Using a Kinect v.2 camera, we recorded the movements of 25 body joints from 25 individuals with MCI and 30 healthy older adults (HC). Signal processing, descriptive statistical analysis, and machine learning techniques were employed to analyze the skeletal gait data in both walking conditions. Results and discussionThe study demonstrated that both straight and oval walking patterns provide valuable insights for MCI detection, with a notable increase in identifiable gait features in the more complex oval walking test. The Random Forest model excelled among various algorithms, achieving an 85.50% accuracy and an 83.9% F-score in detecting MCI during oval walking tests. This research introduces a cost-effective, Kinect-based method that integrates gait analysis—a key behavioral pattern—with machine learning, offering a practical tool for MCI screening in both clinical and home environments. 
    more » « less
  3. Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants’ fall risks are modified by dual-task walking conditions. Seven healthy young and seven healthy older adults were randomly assigned to normal walking and dual-task walking sessions with a slip perturbation. In the dual-task session, the participants walked and simultaneously counted backwards from a randomly provided number. The results indicate that the gait changes in dual-task walking have no destabilizing effect on gait and slip responses in healthy individuals. We also found that, during dual-tasking, healthy individuals adopted cautious gait mode (CGM) strategy that is characterized by reduced walking speed, shorter step length, increased step width, and reduced heel contact velocity and is likely to be an adaptation to minimize attentional demand and decrease slip and fall risk during limited available attentional resources. Exploring interactions between gait variability and cognitive functions while walking may lead to designing appropriate fall interventions among healthy and patient population with fall risk. 
    more » « less
  4. ObjectiveThis study examined the interaction of gait-synchronized vibrotactile cues with an active ankle exoskeleton that provides plantarflexion assistance. BackgroundAn exoskeleton that augments gait may support collaboration through feedback to the user about the state of the exoskeleton or characteristics of the task. MethodsParticipants ( N = 16) were provided combinations of torque assistance and vibrotactile cues at pre-specified time points in late swing and early stance while walking on a self-paced treadmill. Participants were either given explicit instructions ( N = 8) or were allowed to freely interpret (N=8) how to coordinate with cues. ResultsFor the free interpretation group, the data support an 8% increase in stride length and 14% increase in speed with exoskeleton torque across cue timing, as well as a 5% increase in stride length and 7% increase in speed with only vibrotactile cues. When given explicit instructions, participants modulated speed according to cue timing—increasing speed by 17% at cues in late swing and decreasing speed 11% at cues in early stance compared to no cue when exoskeleton torque was off. When torque was on, participants with explicit instructions had reduced changes in speed. ConclusionThese findings support that the presence of torque mitigates how cues were used and highlights the importance of explicit instructions for haptic cuing. Interpreting cues while walking with an exoskeleton may increase cognitive load, influencing overall human-exoskeleton performance for novice users. ApplicationInteractions between haptic feedback and exoskeleton use during gait can inform future feedback designs to support coordination between users and exoskeletons. 
    more » « less
  5. Epidemiological studies link increased fall risk to obesity in older adults, but the mechanism through which obesity increases falls and fall risks is unknown. This study investigates if obesity (Body Mass Index: BMI>30 kg/m2) influenced gait and standing postural characteristics of community dwelling older adults leading to increased risk of falls. One hundred healthy older adults (age 74.0±7.6 years, range of 56-90 years) living independently in a community participated in this study. Participants' history of falls over the previous two years was recorded, with emphasis on frequency and characteristics of falls. Participants with at least two falls in the prior year were classified as fallers. Each individual was assessed for postural stability during quiet stance and gait stability during 10 meters walking. Fall risk parameters of postural sway (COP area, velocity, path-length) were measured utilizing a standard forceplate coupled with an accelerometer affixed at the sternum. Additionally, parameters of gait stability (walking velocity, double support time, and double support time variability) were assessed utilizing an accelerometer affixed at the participant's sternum. Gait and postural stability analyses indicate that obese older adults who fell have significantly altered gait pattern (longer double support time and greater variability) exhibiting a loss of automaticity in walking and, postural instability as compared to their counterparts (i.e., higher sway area and path length, and higher sway velocity) further increasing the risk of a fall given a perturbation. Body weight/BMI is a risk factor for falls in older adults as measured by gait and postural stability parameters. 
    more » « less