This article reviews recent progress in the development of the computing framework Vector Symbolic Architectures (also known as Hyperdimensional Computing). This framework is well suited for implementation in stochastic, nanoscale hardware and it naturally expresses the types of cognitive operations required for Artificial Intelligence (AI). We demonstrate in this article that the ring-like algebraic structure of Vector Symbolic Architectures offers simple but powerful operations on highdimensional vectors that can support all data structures and manipulations relevant in modern computing. In addition, we illustrate the distinguishing feature of Vector Symbolic Architectures, “computing in superposition,” which sets it apart from conventional computing. This latter property opens the door to efficient solutions to the difficult combinatorial search problems inherent in AI applications. Vector Symbolic Architectures are Turing complete, as we show, and we see them acting as a framework for computing with distributed representations in myriad AI settings. This paper serves as a reference for computer architects by illustrating techniques and philosophy of VSAs for distributed computing and relevance to emerging computing hardware, such as neuromorphic computing.
more »
« less
Exploration of Novel Neuromorphic Methodologies for Materials Applications
Many of today’s most interesting questions involve understanding and interpreting complex relationships within graph-based structures. For instance, in materials science, predicting material properties often relies on analyzing the intricate network of atomic interactions. Graph neural networks (GNNs) have emerged as a popular approach for these tasks; however, they suffer from limitations such as inefficient hardware utilization and over-smoothing. Recent advancements in neuromorphic computing offer promising solutions to these challenges. In this work, we evaluate two such neuromorphic strategies known as reservoir computing and hyperdimensional computing. We compare the performance of both approaches for bandgap classification and regression using a subset of the Materials Project dataset. Our results indicate recent advances in hyperdimensional computing can be applied effectively to better represent molecular graphs
more »
« less
- Award ID(s):
- 2319619
- PAR ID:
- 10638832
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 282 to 286
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.more » « less
-
Memorization is an essential functionality that enables today's machine learning algorithms to provide a high quality of learning and reasoning for each prediction. Memorization gives algorithms prior knowledge to keep the context and define confidence for their decision. Unfortunately, the existing deep learning algorithms have a weak and nontransparent notion of memorization. Brain-inspired HyperDimensional Computing (HDC) is introduced as a model of human memory. Therefore, it mimics several important functionalities of the brain memory by operating with a vector that is computationally tractable and mathematically rigorous in describing human cognition. In this manuscript, we introduce a brain-inspired system that represents HDC memorization capability over a graph of relations. We propose GrapHD , hyperdimensional memorization that represents graph-based information in high-dimensional space. GrapHD defines an encoding method representing complex graph structure while supporting both weighted and unweighted graphs. Our encoder spreads the information of all nodes and edges across into a full holistic representation so that no component is more responsible for storing any piece of information than another. Then, GrapHD defines several important cognitive functionalities over the encoded memory graph. These operations include memory reconstruction, information retrieval, graph matching, and shortest path. Our extensive evaluation shows that GrapHD : (1) significantly enhances learning capability by giving the notion of short/long term memorization to learning algorithms, (2) enables cognitive computing and reasoning over memorization graph, and (3) enables holographic brain-like computation with substantial robustness to noise and failure.more » « less
-
Abstract Recent studies of resistive switching devices with hexagonal boron nitride (h-BN) as the switching layer have shown the potential of two-dimensional (2D) materials for memory and neuromorphic computing applications. The use of 2D materials allows scaling the resistive switching layer thickness to sub-nanometer dimensions enabling devices to operate with low switching voltages and high programming speeds, offering large improvements in efficiency and performance as well as ultra-dense integration. These characteristics are of interest for the implementation of neuromorphic computing and machine learning hardware based on memristor crossbars. However, existing demonstrations of h-BN memristors focus on single isolated device switching properties and lack attention to fundamental machine learning functions. This paper demonstrates the hardware implementation of dot product operations, a basic analog function ubiquitous in machine learning, using h-BN memristor arrays. Moreover, we demonstrate the hardware implementation of a linear regression algorithm on h-BN memristor arrays.more » « less
-
The reliability of emerging neuromorphic compute fabrics is of great concern due to their widespread use in critical data-intensive applications. Ensuring such reliability is difficult due to the intensity of underlying computations (billions of parameters), errors induced by low power operation and the complex relationship between errors in computations and their effect on network performance accuracy. We study the problem of designing error-resilient neuromorphic systems where errors can stem from: (a) soft errors in computation of matrix-vector multiplications and neuron activations, (b) malicious trojan and adversarial security attacks and (c) effects of manufacturing process variations on analog crossbar arrays that can affect DNN accuracy. The core principle of error detection relies on embedded predictive neuron checks using invariants derived from the statistics of nominal neuron activation patterns of hidden layers of a neural network. Algorithmic encodings of hidden neuron function are also used to derive invariants for checking. A key contribution is designing checks that are robust to the inherent nonlinearity of neuron computations with minimal impact on error detection coverage. Once errors are detected, they are corrected using probabilistic methods due to the difficulties involved in exact error diagnosis in such complex systems. The technique is scalable across soft errors as well as a range of security attacks. The effects of manufacturing process variations are handled through the use of compact tests from which DNN performance can be assessed using learning techniques. Experimental results on a variety of neuromorphic test systems: DNNs, spiking networks and hyperdimensional computing are presented.more » « less
An official website of the United States government

