Abstract Let be a simple graph. Let and be the maximum degree and the chromatic index of , respectively. We calloverfullif , andcriticalif for every proper subgraph of . Clearly, if is overfull then . Thecoreof , denoted by , is the subgraph of induced by all its maximum degree vertices. We believe that utilizing the core degree condition could be considered as an approach to attack the overfull conjecture. Along this direction, we in this paper show that for any integer , if is critical with and , then is overfull.
more »
« less
The local solubility for homogeneous polynomials with random coefficients over thin sets
Abstract Let and be natural numbers greater or equal to 2. Let be a homogeneous polynomial in variables of degree with integer coefficients , where denotes the inner product, and denotes the Veronese embedding with . Consider a variety in , defined by . In this paper, we examine a set of integer vectors , defined bywhere is a nonsingular form in variables of degree with for some constant depending at most on and . Suppose has a nontrivial integer solution. We confirm that the proportion of integer vectors in , whose associated equation is everywhere locally soluble, converges to a constant as . Moreover, for each place of , if there exists a nonzero such that and the variety in admits a smooth ‐point, the constant is positive.
more »
« less
- Award ID(s):
- 2001549
- PAR ID:
- 10638935
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Mathematika
- Volume:
- 70
- Issue:
- 4
- ISSN:
- 0025-5793
- Page Range / eLocation ID:
- article no. e12282, 25pp
- Subject(s) / Keyword(s):
- Projective variety local solubility
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let be a multigraph with maximum degree and chromatic index . If is bipartite then . Otherwise, by a theorem of Goldberg, , where denotes the odd girth of . Stiebitz, Scheide, Toft, and Favrholdt in their book conjectured that if then contains as a subgraph a ring graph with the same chromatic index. Vizing's characterization of graphs with chromatic index attaining the Shannon's bound showed the above conjecture holds for . Stiebitz et al verified the conjecture for graphs with and . McDonald proved the conjecture when is divisible by . In this paper, we show that the chromatic index condition alone is not sufficient to give the conclusion in the conjecture. On the positive side, we show that the conjecture holds for every with , and the maximum degree condition is best possible. This positive result leans on the positive resolution of the Goldberg‐Seymour conjecture.more » « less
-
null (Ed.)Relying on the classical second moment formula of Rogers we give an effective asymptotic formula for the number of integer vectors v in a ball of radius t, with value Q(v) in a shrinking interval of size t^{−λ}, that is valid for almost all indefinite quadratic forms in n variables for any λmore » « less
-
Let be a dominant rational self-map of a smooth projective variety defined over $$\overline{\mathbb{Q}}$$ . For each point $$P\in X(\overline{\mathbb{Q}})$$ whose forward $$f$$ -orbit is well defined, Silverman introduced the arithmetic degree $$\unicode[STIX]{x1D6FC}_{f}(P)$$ , which measures the growth rate of the heights of the points $$f^{n}(P)$$ . Kawaguchi and Silverman conjectured that $$\unicode[STIX]{x1D6FC}_{f}(P)$$ is well defined and that, as $$P$$ varies, the set of values obtained by $$\unicode[STIX]{x1D6FC}_{f}(P)$$ is finite. Based on constructions by Bedford and Kim and by McMullen, we give a counterexample to this conjecture when $$X=\mathbb{P}^{4}$$ .more » « less
-
Abstract Let be a ‐regular graph on vertices. Frieze, Gould, Karoński, and Pfender began the study of the following random spanning subgraph model . Assign independently to each vertex of a uniform random number , and an edge of is an edge of if and only if . Addressing a problem of Alon and Wei, we prove that if , then with high probability, for each nonnegative integer , there are vertices of degree in .more » « less
An official website of the United States government

