We conjecture a simple combinatorial formula for the Schur expansion of the Frobenius series of the Sn-modules Rn,λ,s, which appear as the cohomology rings of the “∆-Springer” varieties. These modules interpolate between the Garsia-Procesi modules Rµ (which are the type A Springer fiber cohomology rings) and the rings Rn,k defined by Haglund, Rhoades, and Shimozono in the context of the Delta Conjecture. Our formula directly generalizes the known cocharge formula for Garsia-Procesi modules and gives a new cocharge formula for the Delta Conjecture at t = 0, by introducing battery-powered tableaux that “store” extra charge in their battery. Our conjecture has been verified by computer for all n ≤ 10 and s ≤ ℓ(λ)+2, as well as for n ≤ 8 and s ≤ ℓ(λ)+7. We prove it holds for several infinite families of n,λ,s.
more »
« less
VALUES OF RANDOM POLYNOMIALS IN SHRINKING TARGETS
Relying on the classical second moment formula of Rogers we give an effective asymptotic formula for the number of integer vectors v in a ball of radius t, with value Q(v) in a shrinking interval of size t^{−λ}, that is valid for almost all indefinite quadratic forms in n variables for any λ
more »
« less
- Award ID(s):
- 1651563
- PAR ID:
- 10273108
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- Volume:
- 373
- Issue:
- 12
- ISSN:
- 1088-6850
- Page Range / eLocation ID:
- 8677–8695
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We consider ordered pairs (X,B) where X is a finite set of size v and B is some collection of k-element subsets of X such that every t-element subset of X is contained in exactly λ "blocks'' b ∈B for some fixed λ. We represent each block b by a zero-one vector c_b of length v and explore the ideal I(B) of polynomials in v variables with complex coefficients which vanish on the set { c_b ∣ b ∈ B}. After setting up the basic theory, we investigate two parameters related to this ideal: γ1(B) is the smallest degree of a non-trivial polynomial in the ideal I(B) and γ2(B) is the smallest integer s such that I(B) is generated by a set of polynomials of degree at most s. We first prove the general bounds t/2 < γ1(B) ≤ γ2(B) ≤ k. Examining important families of examples, we find that, for symmetric 2-designs and Steiner systems, we have γ2(B) ≤ t. But we expect γ2(B) to be closer to k for less structured designs and we indicate this by constructing infinitely many triple systems satisfying γ2(B) = k.more » « less
-
null (Ed.)Abstract For each integer $$t$$ a tensor category $$\mathcal{V}_t$$ is constructed, such that exact tensor functors $$\mathcal{V}_t\rightarrow \mathcal{C}$$ classify dualizable $$t$$-dimensional objects in $$\mathcal{C}$$ not annihilated by any Schur functor. This means that $$\mathcal{V}_t$$ is the “abelian envelope” of the Deligne category $$\mathcal{D}_t=\operatorname{Rep}(GL_t)$$. Any tensor functor $$\operatorname{Rep}(GL_t)\longrightarrow \mathcal{C}$$ is proved to factor either through $$\mathcal{V}_t$$ or through one of the classical categories $$\operatorname{Rep}(GL(m|n))$$ with $m-n=t$. The universal property of $$\mathcal{V}_t$$ implies that it is equivalent to the categories $$\operatorname{Rep}_{\mathcal{D}_{t_1}\otimes \mathcal{D}_{t_2}}(GL(X),\epsilon )$$, ($$t=t_1+t_2$$, $$t_1$$ not an integer) suggested by Deligne as candidates for the role of abelian envelope.more » « less
-
A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ →h), Γ(h→$$ \mathcal{GG} $$ ), Γ(h→$$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where$$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.more » « less
-
Abstract Let$$M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$$denote the matrix multiplication tensor (and write$$M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$$), and let$$\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$$denote the determinant polynomial considered as a tensor. For a tensorT, let$$\underline {\mathbf {R}}(T)$$denote its border rank. We (i) give the first hand-checkable algebraic proof that$$\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$$, (ii) prove$$\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$$and$$\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$$, where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was$$M_{\langle 2\rangle }$$, (iii) prove$$\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$$, (iv) prove$$\underline {\mathbf {R}}(\operatorname {det}_3)=17$$, improving the previous lower bound of$$12$$, (v) prove$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$$for all$$\mathbf {n}\geq 25$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$$was known, as well as lower bounds for$$4\leq \mathbf {n}\leq 25$$, and (vi) prove$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$$for all$$\mathbf {n} \ge 18$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$$was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, calledborder apolaritydeveloped by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensorTand an integerr, in a finite number of steps, either outputs that there is no border rankrdecomposition forTor produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable whenThas a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory.more » « less
An official website of the United States government

