Here, we show production pathways for greenhouse gas (GHG)-negative bio-based plastics from 2nd and 3rd generation feedstocks. We focus on bio-based plastics that are technically capable of replacing 80% of the global plastic market. By presenting life cycle inventories and discussing GHG-emissions hotspots, this work will inform stakeholders along the plastic supply chain of the necessary steps to achieving net-zero emissions by 2050, and potentially, how to drive net-uptake. This work is of critical importance given the overwhelming mass of plastic produced annually and the resulting CO2 emissions. To conduct this assessment, we derive life cycle inventories for nine different bio-based plastics and address the impact of methodological choices, such as allocation method, on the resulting 100a global warming potential (GWP). Our findings show that resources used and processing methods implemented have significant effects on the potential for us to derive carbon-negative plastics. Furthermore, we find that environmental impact quantification methods greatly influence the perceived GWP of such processes. For example, economic and mass allocation methods resulted in an apparent increase in GWP of up to 39% and 166%, respectively, compared to no allocation for bio-based plastics made from 2nd generation crops, whereas mass allocation resulted in the lowest GWP for bio-based plastics made from 1st generation crops. In considering environmental impact hotspots, our findings show that decarbonization of thermal energy and electricity, reduced use of ammonia-based fertilizer, renewable hydrogen production, use of bio-based alternatives for petrochemicals and plasticizers, enzyme production pathways from 2nd generation crops, and more efficient biomass conversion processes to reduce feedstock inputs may be critical steps in creating GHG negative bio-based plastics in the future.
more »
« less
This content will become publicly available on March 28, 2026
Advances in non-thermal and electrochemical CO2 conversion technologies towards net-zero emissions
The escalating challenges posed by extreme climate change and the rapid greenhouse effect have heightened stress and urgency among governments, researchers, and the public. Greenhouse gas (GHG) emissions, particularly carbon dioxide (CO2), have signi昀椀cantly contributed to rising atmospheric temperatures, with agriculture, forestry, and industrial activities accounting for 22 % and 17 % of global emissions, respectively. In 2022, global GHG emissions reached 53.8 Gt CO2eq, underscoring the critical need for net-zero technologies and a circular carbon economy. This review systematically evaluates the ef昀椀ciencies of non-thermal and electrochemical CO2 conversion technologies, including plasma, arti昀椀cial photosynthesis, and electrochemical methods, for achieving net-zero emissions. These advanced technologies offer promising pathways for converting CO2 into value-added chemicals, such as syngas, methanol, and formic acid, while reducing atmospheric CO2 concentrations. However, upscaling these technologies from laboratory to industrial scales presents signi昀椀cant challenges, including high energy consumption, economic feasibility, and environmental impacts. The review highlights the mechanisms of CO2 conversion, economic considerations, and the potential for industrial implementation. Priority research directions are identi昀椀ed, focusing on ecological footprints, green supply chains, and the integration of renewable energy sources. By addressing these challenges, non-thermal and electrochemical CO2 conversion technologies can play a pivotal role in mitigating climate change and advancing toward a sustainable, circular carbon economy.
more »
« less
- Award ID(s):
- 2132178
- PAR ID:
- 10639177
- Publisher / Repository:
- Elsevier Ltd.
- Date Published:
- Journal Name:
- Cleaner engineering and technology
- ISSN:
- 2666-7908
- Subject(s) / Keyword(s):
- Artificial photosynthesis CO2 conversion Electrochemical conversion Net-zero emissions Plasma technology reactor design.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper studies the time dependence of corrosion resistance in belitic calcium sulfoaluminate (BCSA) cement concrete. BCSA is a hydraulic cement that sets rapidly and has a lower carbon footprint than portland cement (PC). Some studies suggest that BCSA concrete is highly susceptible to chloride-induced corrosion, but these claims are based on testing at 28 days. No later-age results have been reported. We con昀椀rm that BCSA cement concrete exhibits poor corrosion resistance when tested at 28 days, which can be attributed to an immature microstructure with weak resistance to chloride ingress and a pore solution that does not support passivation. We further show that corrosion resistance improves signi昀椀cantly as the BCSA system matures, achieving good corrosion resistance between 90 and 180 days. This improvement relates to the slow hydration of belite, which results in signi昀椀cant later-age microstructure re昀椀nement and probably alters the pore solution in a way that promotes or enhances steel passivation.more » « less
-
Abstract Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.more » « less
-
The urgency of action toward mitigating climate change and reducing material leakage into the environment is inspiring a plethora of innovative technologies, supply chains, and policy actions. These are targeted toward reducing greenhouse gas emissions, natural resource uptake, and decoupling technological systems from fossil-based linear economies using circularity strategies. Industrial and governmental stakeholders are keen to rank these proposed eco-innovations and emerging alternatives based on their scope of contributing to a sustainable and circular economy to meet global warming curtailment and pollution mitigation targets. We describe a novel methodological framework that relies on a multiobjective optimization of cradle-to-cradle life-cycle pathways to screen from a large database of conceptual eco-innovations and rank them based on their potential for establishing a Sustainable Circular Economy (SCE). This methodology is implemented for a motivating case study to evaluate numerous packaging eco-innovations based on their improvement potential and readiness for adoption within the grocery bags value-chain network. It is demonstrated that a preliminary screening step identifies the 10 most promising eco-innovations from a large superset of alternatives, which if developed and adopted can help transition the value chain to a future scenario with net-zero emissions and adherence to the recycled and renewable-content targets set by the United States Plastics pact but at a higher cost.more » « less
-
Escalating carbon dioxide (CO2) emissions have intensified the greenhouse effect, posing a significant long-term threat to environmental sustainability. Direct air capture (DAC) has emerged as a promising approach to achieving a net-zero carbon future, which offers several practical advantages, such as independence from specific CO2 emission sources, economic feasibility, flexible deployment, and minimal risk of CO2 leakage. The design and optimization of DAC sorbents are crucial for accelerating industrial adoption. Metal-organic frameworks (MOFs), with high structural order and tunable pore sizes, present an ideal solution for achieving strong guest-host interactions under trace CO2 conditions. This perspective highlights recent advancements in using MOFs for DAC, examines the molecular-level effects of water vapor on trace CO2 capture, reviews data-driven computational screening methods to develop a molecularly programmable MOF platform for identifying optimal DAC sorbents, and discusses scale-up and cost of MOFs for DAC.more » « less
An official website of the United States government
