In early 2020, a research collaboration between a college of engineering, a research institute, a pre-college STEM program, a rural school district, and the local advanced manufacturing industry began. The goal of this Innovative Technology Experiences for Students and Teachers (ITEST) project was to create community-based engineering design experiences for underserved middle school students (grades 6-8) from rural NC aimed to improve their cognitive (STEM content knowledge and career awareness) and non-cognitive (interest, self-efficacy, and STEM identity) outcomes, and ultimately lead to their increased participation in STEM fields, particularly engineering. The project leverages strategic partnerships to create a 3-part, grade-level specific Engineering Design and Exploration course that engages middle school students in authentic engineering design experiences that allow them to research, design, and problem-solve in a simulated advanced manufacturing environment. Shortly after receiving university approval to begin the research process, progress was halted due to an unprecedented global health crisis. The school district was closed for several weeks as administrators and teachers prepared to transition to remote learning. In addition, the district experienced unexpected teacher and administrator turnover. In the wake of such uncertainty, the partners have pivoted their research design to work more closely with industry partners while still maintaining an active relationship with the school district as they rebuild. This paper will describe the challenges faced, strategies employed, and lessons learned during the course development and implementation process.
more »
« less
This content will become publicly available on January 16, 2026
Fostering STEM competency in high-school students by bridging engineering and ophthalmology through eye research
Recent data across the globe indicates a decline in stem competency among secondary education students. Despite persistent interest in STEM fields this decrease in preparedness could yield detrimental effects for both future scientists and engineers. To address this current trend, a collaborative partnership between a university and high school commenced. The goal was to create an advanced experiential engineering course focused primarily on ophthalmology principles, research, and hands-on solutions. Twenty-one high school students (grades 9-12) enrolled in the course. Their objective was to investigate research questions involving ocular physiology. These ranged from surveying intraocular pressure measurement methods, examining the nature of vitreous humor properties, and investigating the inherent connection between blood flow and fluid dynamics. Furthermore, students engaged in hands-on experimentation that resulted in a hydraulics-based model which attempted to link the correlation between blood pressure and intraocular pressure involved in glaucoma progression. Post-course interviews revealed three major themes: i) an increased appreciation for the utility of mathematics and its real-world use; ii) the importance of the mentor-mentee relationship and professional networking; and iii) increased access to resources beyond what is traditionally found in a high school classroom. These findings suggest that incorporating research into a high school classroom can foster positive outcomes and spark students’ interest in ophthalmology research and in STEM more broadly. This course can serve as a model in future development of project-based engineering curriculum and help broaden participation in STEM.
more »
« less
- PAR ID:
- 10639181
- Publisher / Repository:
- PAGEPress, Pavia, Italy.
- Date Published:
- Journal Name:
- Proceedings of the European Academy of Sciences and Arts
- Volume:
- 4
- ISSN:
- 2791-5301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To help foster interest in science, technology, engineering, and math (STEM), it is important to develop opportunities that excite and teach young minds about STEM-related fields. Over the past several years, our university-based research group has sought to help grow excitement around the biomechanics and biomedical engineering fields. The purposes of this technical brief are to (1) discuss the development of a partnership built between a St. Louis area high school and biomechanics research lab and (2) provide practical guidance for other researchers looking to implement a long-term outreach program. The partnership uses three different outreach opportunities. The first opportunity consisted of 12th-grade students visiting university research labs for an up-close perspective of ongoing biomedical research. The second opportunity was a biomedical research showcase where research-active graduate students traveled to the high school to perform demonstrations. The third opportunity consisted of a collaborative capstone project where a high school student was able to carry out research directly in a university lab. To date, we have expanded our reach from 19 students to interacting with over 100 students, which has yielded increased interest in STEM related research. Our postprogram survey showed that outreach programs such as the one described herein can increase interest in STEM within all ages of high school students. Building partnerships between high schools and university researchers increases the interest in STEM amongst high school students, and gives graduate students an outlet to present work to an eager-to-learn audience.more » « less
-
Engineering education, with its focus on design and problem solving, has been shown to be fertile ground for encouraging students’ further development of their fundamental math and science skills in a way that they find relevant and engaging, and for promoting interest in STEM more broadly. To capitalize on these positive aspects of the engineering context, researchers developed, implemented, and studied a three-year engineering curriculum for grades 6 – 8 that utilizes the engineering design process and problem-based learning. In this semester-long elective course, students work through a series of design challenges within a given context (a carnival, airplanes and flight, and robotics, respectively, for 6th, 7th and 8th grades) and learn engineering content as well as practice fundamental math and science skills. This curriculum was developed and researched as part of an earlier project; in that work, course participation was linked with increased academic achievement on state-wide math and science assessments as well as heightened cognitive and behavioral engagement in STEM and science interest [1]. The current work seeks to replicate the findings of this earlier study in a different and larger school district while a) expanding the research foci to include teacher training and teachers’ pedagogical content knowledge and b) refining the curriculum materials including the teacher website and support materials. In this paper, we present the research strand focusing on the impact of the course on students’ attitudinal factors including engagement, science interest, and science and math anxiety. These factors were measured in each semester-long course using a pre-post survey design. Survey items are primarily from validated instruments and are similar to those used in prior research on this curriculum and its impact on students; prior research demonstrated good reliability, with alpha values ranging from 0.84 to 0.91 for each construct [1]. We compare students’ levels of engagement, science interest, and math and science anxiety at the pre and post time points to understand whether and how participating in the course influences their standing on these variables. . Open-ended survey items were used as a supplementary data source. The preliminary results from the first year of implementation (2022-2023 academic year) suggest that similar to the original study, there is an increase across some of the student constructs, including student engagement. This finding was also supported by engineering teachers’ input about student engagement in the classroom. As the study progresses into its planned 2nd and 3rd years of curriculum implementation, we will be able to further discern the extent to which multiple years of course enrollment might differentially impact the attitudinal factors of interest (i.e., dosage effects).more » « less
-
NA (Ed.)This Research paper explores the activities within the biologically inspired design-focused engineering curriculum to determine if they fostered students’ engagement in learning. This work builds on concurrent research exploring students' application of BID in engineering and teachers’ implementation of BID within their respective engineering classrooms. Participants comprised ninth-grade high school students (n=12) enrolled in the first-year engineering course across two high schools. Qualitative content analysis was conducted on classroom observation field notes, student focus groups, teacher curriculum enactment surveys, and teacher interviews. The finding revealed that student engagement varied across the seven-week-long unit. In the initial week, engagement was relatively low since the activities were static and required learning to be scaffolded via worksheets. However, during weeks three through six, engagement positively shifted due to the activities being more dynamic, requiring students to engage in inquiry and design learning. Furthermore, students’ academic engagement was fostered due to hands-on experiences and workbased authentic problems presented in the unit, which encouraged collaboration.more » « less
-
High school science and math classes can often seem irrelevant to the everyday lives ofstudents leading to difficulties in engaging students in these topics. Moreover, limitedopportunities for hands-on learning can further perpetuate perceptions of subject matter difficultyand result in limited exposure to available career paths. By incorporating hands-on curriculummodules in geotechnical engineering, it is possible to overcome these issues while providingstudents with real-world applications making the material more engaging and meaningful. Thispaper presents two curriculum modules developed as part of the National Science Foundation-funded Research Experiences for Teachers (RET) site at North Dakota State University. Thesemodules—one for a high school science class and one for a high school math class—weredeveloped with the aim of promoting science, technology, engineering, and mathematicseducation (STEM), while inspiring students to consider careers in geotechnical engineering. Thelessons are designed to align with the Next Generation Science Standards and include hands-onactivities along with real-world applications to enhance student understanding of the subjectmatter. The effectiveness of these modules was evaluated through formative and summativeassessment and student surveys. The results indicate that the modules can effectively engagestudents in geotechnical engineering by connecting the math and science concepts from theirclasses and increase their interest in STEM fields. These curriculum modules are a valuableresource for high school math and science teachers looking to integrate engineering into theirclasses.more » « less
An official website of the United States government
