Methods for state estimation that rely on visual information are challenging on legged robots due to rapid changes in the viewing angle of onboard cameras. In this work, we show that by leveraging structure in the way that the robot locomotes, the accuracy of visual-inertial SLAM in these challenging scenarios can be increased. We present a method that takes advantage of the underlying periodic predictability often present in the motion of legged robots to improve the performance of the feature tracking module within a visual-inertial SLAM system. Our method performs multi-session SLAM on a single robot, where each session is responsible for mapping during a distinct portion of the robot’s gait cycle. Our method produces lower absolute trajectory error than several state-of-the-art methods for visual-inertial SLAM in both a simulated environment and on data collected on a quadrupedal robot executing dynamic gaits. On real-world bounding gaits, our median trajectory error was less than 35% of the error of the next best estimate provided by state-of-the-art methods.
more »
« less
AstroSLAM: Autonomous monocular navigation in the vicinity of a celestial small body—Theory and experiments
We propose AstroSLAM, a standalone vision-based solution for autonomous online navigation around an unknown celestial target small body. AstroSLAM is predicated on the formulation of the SLAM problem as an incrementally growing factor graph, facilitated by the use of the GTSAM library and the iSAM2 engine. By combining sensor fusion with orbital motion priors, we achieve improved performance over a baseline SLAM solution and outperform state-of-the-art methods predicated on pre-integrated inertial measurement unit factors. We incorporate orbital motion constraints into the factor graph by devising a novel relative dynamics—RelDyn—factor, which links the relative pose of the spacecraft to the problem of predicting trajectories stemming from the motion of the spacecraft in the vicinity of the small body. We demonstrate AstroSLAM’s performance and compare against the state-of-the-art methods using both real legacy mission imagery and trajectory data courtesy of NASA’s Planetary Data System, as well as real in-lab imagery data produced on a 3 degree-of-freedom spacecraft simulator test-bed.
more »
« less
- Award ID(s):
- 2101250
- PAR ID:
- 10639388
- Publisher / Repository:
- Sage Publications
- Date Published:
- Journal Name:
- The International Journal of Robotics Research
- ISSN:
- 0278-3649
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate a scenario where a chaser spacecraft or satellite equipped with a monocular camera navigates in close proximity to a target spacecraft. The satellite’s primary objective is to construct a representation of the operational environment and localize itself within it, utilizing the available sensor data. We frame the joint task of state trajectory and map estimation as an instance of smoothing-based simultaneous localization and mapping (SLAM), where the underlying structure of the problem is represented as a factor graph. Rather than considering estimation and planning as separate tasks, we propose to control the camera observations to actively reduce the uncertainty of the estimation variables, the spacecraft state, and the map landmarks. This is accomplished by adopting an information-theoretic metric to reason about the impact of candidate actions on the evolution of the belief state. Numerical simulations indicate that our proposed method successfully captures the interplay between planning and estimation, hence yielding reduced uncertainty and higher accuracy when compared to commonly adopted passive sensing strategies.more » « less
-
We propose a standalone monocular visual Simultaneous Localization and Mapping (vSLAM) initialization pipeline for autonomous space robots. Our method, a state-of-the-art factor graph optimization pipeline, extends Structure from Small Motion (SfSM) to robustly initialize a monocular agent in spacecraft inspection trajectories, addressing visual estimation challenges such as weak-perspective projection and center-pointing motion, which exacerbates the bas-relief ambiguity, dominant planar geometry, which causes motion estimation degeneracies in classical Structure from Motion, and dynamic illumination conditions, which reduce the survivability of visual information. We validate our approach on realistic, simulated satellite inspection image sequences with a tumbling spacecraft and demonstrate the method’s effectiveness over existing monocular initialization procedures.more » « less
-
We propose a standalone monocular visual Simultaneous Localization and Mapping (vSLAM) initialization pipeline for autonomous space robots. Our method, a state-of-the- art factor graph optimization pipeline, extends Structure from Small Motion (SfSM) to robustly initialize a monocular agent in spacecraft inspection trajectories, addressing visual estimation challenges such as weak-perspective projection and center-pointing motion, which exacerbates the bas-relief ambiguity, dominant planar geometry, which causes motion estimation degeneracies in classical Structure from Motion, and dynamic illumination conditions, which reduce the survivability of visual information. We validate our approach on realistic, simulated satellite inspection image sequences with a tumbling spacecraft and demonstrate the method’s effectiveness over existing monocular initialization procedures.more » « less
-
The graph convolutional network (GCN) has recently achieved promising performance of 3D human pose estimation (HPE) by modeling the relationship among body parts. However, most prior GCN approaches suffer from two main drawbacks. First, they share a feature transformation for each node within a graph convolution layer. This prevents them from learning different relations between different body joints. Second, the graph is usually defined according to the human skeleton and is suboptimal because human activities often exhibit motion patterns beyond the natural connections of body joints. To address these limitations, we introduce a novel Modulated GCN for 3D HPE. It consists of two main components: weight modulation and affinity modulation. Weight modulation learns different modulation vectors for different nodes so that the feature transformations of different nodes are disentangled while retaining a small model size. Affinity modulation adjusts the graph structure in a GCN so that it can model additional edges beyond the human skeleton. We investigate several affinity modulation methods as well as the impact of regularizations. Rigorous ablation study indicates both types of modulation improve performance with negligible overhead. Compared with state-of-the-art GCNs for 3D HPE, our approach either significantly reduces the estimation errors, e.g., by around 10%, while retaining a small model size or drastically reduces the model size, e.g., from 4.22M to 0.29M (a 14.5× reduction), while achieving comparable performance. Results on two benchmarks show our Modulated GCN outperforms some recent states of the art. Our code is available at https://github.com/ZhimingZo/Modulated-GCN.more » « less
An official website of the United States government

