In this work, we tackle the problem of active camera localization, which controls the camera movements actively to achieve an accurate camera pose. The past solutions are mostly based on Markov Localization, which reduces the position-wise camera uncertainty for localization. These approaches localize the camera in the discrete pose space and are agnostic to the localization-driven scene property, which restricts the camera pose accuracy in the coarse scale. We propose to overcome these limitations via a novel active camera localization algorithm, composed of a passive and an active localization module. The former optimizes the camera pose in the continuous pose space by establishing point-wise camera-world correspondences. The latter explicitly models the scene and camera uncertainty components to plan the right path for accurate camera pose estimation. We validate our algorithm on the challenging localization scenarios from both synthetic and scanned real-world indoor scenes. Experimental results demonstrate that our algorithm outperforms both the state-of-the-art Markov Localization based approach and other compared approaches on the fine-scale camera pose accuracy
more »
« less
Factor Graph-Based Active SLAM for Spacecraft Proximity Operations
We investigate a scenario where a chaser spacecraft or satellite equipped with a monocular camera navigates in close proximity to a target spacecraft. The satellite’s primary objective is to construct a representation of the operational environment and localize itself within it, utilizing the available sensor data. We frame the joint task of state trajectory and map estimation as an instance of smoothing-based simultaneous localization and mapping (SLAM), where the underlying structure of the problem is represented as a factor graph. Rather than considering estimation and planning as separate tasks, we propose to control the camera observations to actively reduce the uncertainty of the estimation variables, the spacecraft state, and the map landmarks. This is accomplished by adopting an information-theoretic metric to reason about the impact of candidate actions on the evolution of the belief state. Numerical simulations indicate that our proposed method successfully captures the interplay between planning and estimation, hence yielding reduced uncertainty and higher accuracy when compared to commonly adopted passive sensing strategies.
more »
« less
- Award ID(s):
- 2101250
- PAR ID:
- 10639390
- Publisher / Repository:
- American Astronautical Society
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lighting understanding plays an important role in virtual object composition, including mobile augmented reality (AR) applications. Prior work often targets recovering lighting from the physical environment to support photorealistic AR rendering. Because the common workflow is to use a back-facing camera to capture the physical world for overlaying virtual objects, we refer to this usage pattern as back-facing AR. However, existing methods often fall short in supporting emerging front-facing mobile AR applications, e.g., virtual try-on where a user leverages a front-facing camera to explore the effect of various products (e.g., glasses or hats) of different styles. This lack of support can be attributed to the unique challenges of obtaining 360° HDR environment maps, an ideal format of lighting representation, from the front-facing camera and existing techniques. In this paper, we propose to leverage dual-camera streaming to generate a high-quality environment map by combining multi-view lighting reconstruction and parametric directional lighting estimation. Our preliminary results show improved rendering quality using a dual-camera setup for front-facing AR compared to a commercial solution.more » « less
-
In this work, we propose a novel method to supervise 3D Gaussian Splatting (3DGS) scenes using optical tactile sensors. Optical tactile sensors have become widespread in their use in robotics for manipulation and object representation; however, raw optical tactile sensor data is unsuitable to directly supervise a 3DGS scene. Our representation leverages a Gaussian Process Implicit Surface to implicitly represent the object, combining many touches into a unified representation with uncertainty. We merge this model with a monocular depth estimation network, which is aligned in a two stage process, coarsely aligning with a depth camera and then finely adjusting to match our touch data. For every training image, our method produces a corresponding fused depth and uncertainty map. Utilizing this additional information, we propose a new loss function, variance weighted depth supervised loss, for training the 3DGS scene model. We leverage the DenseTact optical tactile sensor and RealSense RGB-D camera to show that combining touch and vision in this manner leads to quantitatively and qualitatively better results than vision or touch alone in a few-view scene syntheses on opaque as well as on reflective and transparent objects. Please see our project page at armlabstanford.github.io/touch-gsmore » « less
-
We present Splat-Nav, a real-time robot navigation pipeline for Gaussian splatting (GSplat) scenes, a powerful new 3-D scene representation. Splat-Nav consists of two components: first, Splat-Plan, a safe planning module, and second, Splat-Loc, a robust vision-based pose estimation module. Splat-Plan builds a safe-by-construction polytope corridor through the map based on mathematically rigorous collision constraints and then constructs a Bézier curve trajectory through this corridor. Splat-Loc provides real-time recursive state estimates given only an RGB feed from an on-board camera, leveraging the point-cloud representation inherent in GSplat scenes. Working together, these modules give robots the ability to recursively replan smooth and safe trajectories to goal locations. Goals can be specified with position coordinates, or with language commands by using a semantic GSplat. We demonstrate improved safety compared to point cloud-based methods in extensive simulation experiments. In a total of 126 hardware flights, we demonstrate equivalent safety and speed compared to motion capture and visual odometry, but without a manual frame alignment required by those methods. We show online replanning at more than 2 Hz and pose estimation at about 25 Hz, an order of magnitude faster than neural radiance field-based navigation methods, thereby enabling real-time navigation.more » « less
-
As we strive to establish a long-term presence in space, it is crucial to plan large-scale space missions and campaigns with future uncertainties in mind. However, integrated space mission planning, which simultaneously considers mission planning and spacecraft design, faces significant challenges when dealing with uncertainties; this problem is formulated as a stochastic mixed integer nonlinear program (MINLP), and solving it using the conventional method would be computationally prohibitive for realistic applications. Extending a deterministic decomposition method from our previous work, we propose a novel and computationally efficient approach for integrated space mission planning under uncertainty. The proposed method effectively combines the Alternating Direction Method of Multipliers (ADMM)-based decomposition framework from our previous work, robust optimization, and two-stage stochastic programming (TSSP).This hybrid approach first solves the integrated problem deterministically, assuming the worst scenario, to precompute the robust spacecraft design. Subsequently, the two-stage stochastic program is solved for mission planning, effectively transforming the problem into a more manageable mixed-integer linear program (MILP). This approach significantly reduces computational costs compared to the exact method, but may potentially miss solutions that the exact method might find. We examine this balance through a case study of staged infrastructure deployment on the lunar surface under future demand uncertainty. When comparing the proposed method with a fully coupled benchmark, the results indicate that our approach can achieve nearly identical objective values (no worse than 1% in solved problems) while drastically reducing computational costs.more » « less
An official website of the United States government

