There has been an increasing interest in exploring quantities associated with quantum information at colliders. We perform a detailed analysis describing how to measure the quantum discord in the top anti-top quantum state at the Large Hadron Collider (LHC). While for pure states, quantum discord, entanglement, and Bell nonlocality all probe the same correlations, for mixed states they probe different aspects of quantum correlations. The quantum discord, in particular, is interesting because it aims to encapsulate all correlations between systems that cannot have a classical origin. We employ two complementary approaches for the study of the top anti-top system, namely the decay method and the kinematic method. We highlight subtleties associated with measuring discord for reconstructed quantum states at colliders. Usually quantum discord is difficult to compute due to an extremization that must be performed. We show, however, that for the$$ t\overline{t} $$ system this extremization can be performed analytically and we provide closed-form formulas for the quantum discord. We demonstrate that with current LHC datasets, quantum discord can be observed at 3.6 – 5.7σ, depending on the signal region, with the decay method and can be measured at a precision of 0.1 – 0.2% with the kinematic method. At the high luminosity LHC, the observation of quantum discord is expected to be > 5σusing both the decay and kinematic methods and can be measured with a precision of 5% with the decay method and 0.05% with the kinematic method. Additionally, we identify the kinematic cuts at the LHC to isolate the$$ t\overline{t} $$ state that is separable but has non-zero discord. By systematically investigating quantum discord for the first time through a detailed collider analysis, this work expands the toolkit for quantum information studies in particle physics and lays the groundwork for deeper insights into the quantum properties in high-energy collisions.
more »
« less
This content will become publicly available on September 1, 2026
Quantum information meets high-energy physics: input to the update of the European strategy for particle physics
Abstract Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics.
more »
« less
- Award ID(s):
- 2117997
- PAR ID:
- 10639417
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- The European Physical Journal Plus
- Volume:
- 140
- Issue:
- 9
- ISSN:
- 2190-5444
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The advancement of microcomb sources, which serve as a versatile and powerful platform for various time–frequency measurements, have spurred widespread interest across disciplines. Their uses span coherent optical and microwave communications, atomic clocks, high-precision LiDARs, spectrometers, and frequency synthesizers. Recent breakthroughs in fabricating optical micro-cavities, along with the excitation and control of microcombs, have broadened their applications, bridging the gap between physical exploration and practical engineering systems. These developments pave the way for pioneering approaches in both classical and quantum information sciences. In this review article, we conduct a thorough examination of the latest strategies related to microcombs, their enhancement and functionalization schemes, and cutting-edge applications that cover signal generation, data transmission, quantum analysis, and information gathering, processing and computation. Additionally, we provide in-depth evaluations of microcomb-based methodologies tailored for a variety of applications. To conclude, we consider the current state of research and suggest a prospective roadmap that could transition microcomb technology from laboratory settings to broader real-world applications.more » « less
-
null (Ed.)Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.more » « less
-
We present a novel technique to incorporate precision calculations from quantum chromodynamics into fully differential particle-level Monte Carlo simulations. By minimizing an information-theoretic quantity subject to constraints, our reweighted Monte Carlo incorporates systematic uncertainties absent in individual Monte Carlo predictions, achieving consistency with the theory input in precision and its estimated systematic uncertainties. Our method can be applied to arbitrary observables known from precision calculations, including multiple observables simultaneously. It generates strictly positive weights, thus offering a clear path to statistically powerful and theoretically precise computations for current and future collider experiments. As a proof of concept, we apply our technique to event-shape observables at electron-positron colliders, leveraging existing precision calculations of thrust. Our analysis highlights the importance of logarithmic moments of event shapes, which have not been previously studied in the collider physics literature.more » « less
-
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology.more » « less
An official website of the United States government
