Abstract Phosphorus (P) control is critical to mitigating eutrophication in aquatic ecosystems, but the effectiveness of controlling P export from soils has been limited by our poor understanding of P dynamics along the land‐ocean aquatic continuum as well as the lack of well‐developed process models that effectively couple terrestrial and aquatic biogeochemical P processes. Here, we coupled riverine P biogeochemical processes and water transport with terrestrial processes within the framework of the Dynamic Land Ecosystem Model to assess how multiple environmental changes, including fertilizer and manure P uses, land use, climate, and atmospheric CO2, have affected the long‐term dynamics of P loading and export from the Mississippi River Basin to the Gulf of Mexico during 1901–2018. Simulations show that riverine exports of dissolved inorganic phosphorus (DIP), dissolved organic phosphorus, particulate organic phosphorus (POP), and particulate inorganic phosphorus (PIP) increased by 42%, 53%, 60%, and 53%, respectively, since the 1960s. Riverine DIP and PIP exports were the dominant components of the total P flux. DIP export was mainly enhanced by the growing mineral P fertilizer use in croplands, while increased PIP and POP exports were a result of the intensified soil erosion due to increased precipitation. Climate variability resulted in substantial interannual and decadal variations in P loading and export. Soil legacy P continues to contribute to P loading. Our findings highlight the necessity to adopt effective P management strategies to control P losses through reductions in soil erosion, and additionally, to improve P use efficiency in crop production.
more »
« less
This content will become publicly available on September 1, 2026
Clarifying the trophic state concept to advance macroscale freshwater science and management
Abstract For over a century, ecologists have used the concept of trophic state (TS) to characterize an aquatic ecosystem's biological productivity. However, multiple TS classification schemes, each relying on a variety of measurable parameters as proxies for productivity, have emerged to meet use‐specific needs. Frequently, chlorophyll a, phosphorus, and Secchi depth are used to classify TS based on autotrophic production, whereas phosphorus, dissolved organic carbon, and true color are used to classify TS based on both autotrophic and heterotrophic production. Both classification approaches aim to characterize an ecosystem's function broadly, but with varying degrees of autotrophic and heterotrophic processes considered in those characterizations. Moreover, differing classification schemes can create inconsistent interpretations of ecosystem integrity. For example, the US Clean Water Act focuses exclusively on algal threats to water quality, framed in terms of eutrophication in response to nutrient loading. This usage lacks information about non‐algal threats to water quality, such as dystrophication in response to dissolved organic carbon loading. Consequently, the TS classification schemes used to identify eutrophication and dystrophication may refer to ecosystems similarly (e.g., oligotrophic and eutrophic), yet these categories are derived from different proxies. These inconsistencies in TS classification schemes may be compounded when interdisciplinary projects employ varied TS frameworks. Even with these shortcomings, TS can still be used to distill information on complex aquatic ecosystem function into a set of generalizable expectations. The usefulness of distilling complex information into a TS index is substantial such that usage inconsistencies should be explicitly addressed and resolved. To emphasize the consequences of diverging TS classification schemes, we present three case studies for which an improved understanding of the TS concept advances freshwater research, management efforts, and interdisciplinary collaboration. To increase clarity in TS, the aquatic sciences could benefit from including information about the proxy variables, ecosystem type, as well as the spatiotemporal domains used to classify TS. As the field of aquatic sciences expands and climatic irregularity increases, we highlight the importance of re‐evaluating fundamental concepts, such as TS, to ensure their compatibility with evolving science.
more »
« less
- Award ID(s):
- 2306895
- PAR ID:
- 10639419
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 16
- Issue:
- 9
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Beisner, Beatrix E (Ed.)Abstract Within aquatic ecosystems, heterotrophic, mixotrophic and autotrophic plankton are entangled in a complex network of competitive, predatory and mutualistic interactions. “Browning,” the increase of colored dissolved organic matter (CDOM) from terrestrial catchments, can affect this network of interactions by simultaneously decreasing light availability and increasing organic carbon and nutrients supplies. Here, we introduce a conceptual, process-based numerical model to investigate the effects of browning on a microbial food web consisting of heterotrophic bacterioplankton, bacterivorous phago-mixoplankton, autotrophic phytoplankton and the resources light, inorganic phosphorus and DOM. Additionally, we explore how the investment in autotrophic vs. phagotrophic resource acquisition influences mixoplankton performance. Several model predictions are in broad agreement with empirical observations under increasing CDOM supply, including increased bacterial biomass and inorganic phosphorous, decreased light penetration, the potential for a unimodal phytoplankton biomass response and a local minimum in mixoplankton biomass. Our results also suggest that mixoplankton with a high investment in phototrophy perform best in many conditions but that phosphorous acquisition via prey is crucial under high light-low nutrient conditions. Overall, our model analyses suggest that responses to altered CDOM supply are largely determined by systematic changes in the relative importance of nutrient vs. energy limitation of each plankton group.more » « less
-
Re, Angela (Ed.)ABSTRACT Dissolved organic phosphorus (DOP) is a potential source of aquatic eutrophication and pollution because it can potentially stimulate growth in some species and inhibit growth in other species of algae, the foundation of the marine ecosystem. Inositol hexaphosphate (also named phytic acid or PA), an abundant organophosphate, is presumably ubiquitous in the marine environment, but how it affects marine primary producers is poorly understood. Here, we investigated the bioavailability of this DOP to the cosmopolitan coccolithophoreEmiliania huxleyi. Our results showed thatE.huxleyicells can take up PA and dissolved inorganic phosphorus (DIP) simultaneously. Absorbed PA can efficiently support algal growth, producing cell yield between DIP and phosphorus (P)-depleted conditions. Accordingly, PA supply as the sole P source highly influences cellular metabolism and nutrient stoichiometry. Particularly, PA-grown cultures exhibited enhanced carbon fixation, increased lipid content, activated energy metabolism, and induced nitrogen assimilation. However, our data suggest that PA may also exert some levels of toxic effects onE. huxleyi. This study provides novel insights into the variable effects of a DOP on marine phytoplankton, which will inform new inquiries about how the complex DOP constituencies in the ocean will shape phytoplankton community structure and function. IMPORTANCEThe dissolved organic phosphorus (DOP) utilization in phytoplankton plays vital roles in cellular P homeostasis, P-nutrient niche, and the dynamics of community structure in marine ecosystems, but its mechanisms, potentially varying with species, are far from clear. In this study, we investigated the utilization of a widespread DOP species, which is commonly produced by plants (land plants and marine macrophytes) and released into coastal areas, in a globally distributed bloom-forming coccolithophore species in various phosphorus environments. Using a combination of physiological and transcriptomic measurements and analyses, our experimental results revealed the complex mechanism and two-sided effects of DOP (major algal growth-supporting and minor toxic effects) in this species, providing a novel perspective on phytoplankton nutrient regulation.more » « less
-
Abstract In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly supportgreen food websbased on primary production andbrown food websbased on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs.We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity.Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs.more » « less
-
ABSTRACT Mixotrophy, the combination of heterotrophic and autotrophic nutrition modes, is emerging as the rule rather than the exception in marine photosynthetic plankton. Trichodesmium, a prominent diazotroph ubiquitous in the (sub)tropical oceans, is generally considered to obtain energy via autotrophy. While the ability of Trichodesmium to use dissolved organic phosphorus when deprived of inorganic phosphorus sources is well known, the extent to which this important cyanobacterium may benefit from other dissolved organic matter (DOM) resources is unknown. Here we provide evidence of carbon-, nitrogen- and phosphorus-rich DOM molecules enhancing N2 fixation rates and nifH gene expression in natural Trichodesmium colonies collected at two stations in the western tropical South Pacific. Sampling at a third station located in the oligotrophic South Pacific Gyre revealed no Trichodesmium but showed presence of UCYN-B, although no nifH expression was detected. Our results suggest that Trichodesmium behaves mixotrophically in response to certain environmental conditions, providing them with metabolic plasticity and adding up to the view that mixotrophy is widespread among marine microbes.more » « less
An official website of the United States government
