Variation in animal abundance is shaped by scale‐dependent habitat, competition, and anthropogenic influences. CoyotesCanis latranshave dramatically increased in abundance while expanding their range over the past 100 years. Management goals typically seek to lower coyote populations to reduce their threats to humans, pets, livestock and sensitive prey. Despite their outsized ecological and social roles in the Americas, the factors affecting coyote abundance across their range remain unclear. We fit Royle–Nichols abundance models at two spatial scales in a Bayesian hierarchical framework to three years of data from 4587 camera trap sites arranged in 254 arrays across the contiguous USA to assess how habitat, large carnivores, anthropogenic development and hunting regulations affect coyote abundance. Coyote abundance was highest in southwestern USA and lowest in the northeast. Abundance responded to some factors as expected, including positive (soft mast, agriculture, grass/shrub habitat, urban–natural edge) and negative (latitude and forest cover) relationships. Colonization date had a negative relationship, suggesting coyote populations have not reached carrying capacity in recently colonized regions. Several relationships were scale‐dependent, including urban development, which was negative at local (100‐m) scales but positive at larger (5‐km) scales. Large carnivore effects were habitat‐dependent, with sometimes opposing relationships manifesting across variation in forest cover and urban development. Coyote abundance was higher where human hunting was permitted, and this relationship was strongest at local scales. These results, including a national map of coyote abundance, update ecological understanding of coyotes and can inform coyote management at local and landscape scales. These findings expand results from local studies suggesting that directly hunting coyotes does not decrease their abundance and may actually increase it. Ongoing large carnivore recoveries globally will likely affect subordinate carnivore abundance, but not in universally negative ways, and our work demonstrates how such effects can be habitat and scale dependent. 
                        more » 
                        « less   
                    This content will become publicly available on January 21, 2026
                            
                            Impervious surface cover and number of restaurants shape diet variation in an urban carnivore
                        
                    
    
            Abstract In the past decade, studies have demonstrated that urban and nonurban wildlife populations exhibit differences in foraging behavior and diet. However, little is known about how environmental heterogeneity shapes dietary variation of organisms within cities. We examined the vertebrate prey components of diets of coyotes (Canis latrans) in San Francisco to quantify territory‐ and individual‐level dietary differences and determine how within‐city variation in land cover and land use affects coyote diet. We genotyped fecal samples for individual coyote identification and used DNA metabarcoding to quantify diet composition and individual niche differentiation. The highest contributor to coyote diet overall was anthropogenic food followed by small mammals. The most frequently detected species were domestic chicken, pocket gopher (Thomomys bottae), domestic pig, and raccoon (Procyon lotor). Diet composition varied significantly across territories and among individuals, with territories explaining most of the variation. Within territories (i.e., family groups), the amount of dietary variation attributed to among‐individual differences increased with green space and decreased with impervious surface cover. The quantity of anthropogenic food in scats also was positively correlated with impervious surface cover, suggesting that coyotes consumed more human food in more urbanized territories. The quantity of invasive, human‐commensal rodents in the diet was positively correlated with the number of food services in a territory. Overall, our results revealed substantial intraspecific variation in coyote diet associated with urban landscape heterogeneity and point to a diversifying effect of urbanization on population diet. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10639518
- Publisher / Repository:
- Ecological Society of America
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Gossmann, Toni (Ed.)Abstract In the context of evolutionary time, cities are an extremely recent development. Although our understanding of how urbanization alters ecosystems is well developed, empirical work examining the consequences of urbanization on adaptive evolution remains limited. To facilitate future work, we offer candidate genes for one of the most prominent urban carnivores across North America. The coyote (Canis latrans) is a highly adaptable carnivore distributed throughout urban and nonurban regions in North America. As such, the coyote can serve as a blueprint for understanding the various pathways by which urbanization can influence the genomes of wildlife via comparisons along urban–rural gradients, as well as between metropolitan areas. Given the close evolutionary relationship between coyotes and domestic dogs, we leverage the well-annotated dog genome and highly conserved mammalian genes from model species to outline how urbanization may alter coyote genotypes and shape coyote phenotypes. We identify variables that may alter selection pressure for urban coyotes and offer suggestions of candidate genes to explore. Specifically, we focus on pathways related to diet, health, behavior, cognition, and reproduction. In a rapidly urbanizing world, understanding how species cope and adapt to anthropogenic change can facilitate the persistence of, and coexistence with, these species.more » « less
- 
            Apex predators exert suppressive effects on mesocarnivores; however, they also provide important carrion subsidies. Optimal foraging theory predicts that individuals respond to resource competition by using high-value resources, while competition theory predicts that individuals respond by partitioning resources. This study investigated how the return of wolves ( Canis lupus Linneas, 1758) to Washington state impacted the diet of a subordinate carnivore—the coyote ( Canis latrans Say, 1823). We collected coyote scats from two areas of northern Washington with differing wolf densities and used traditional analysis of undigested remains to infer diet. We tested for differences in the volumes of prey categories, the proportion of ungulate prey that was scavenged, and diet diversity between seasons, study sites, and inside and outside of wolf pack territories. Coyote scats contained more adult ungulate remains inside of wolf pack territories (27%) compared to outside (14%), while seeds and berries were more commonly consumed outside of wolf pack territories (23%) than inside of wolf pack territories (4%). These findings suggest that coyotes are taking advantage of wolf kills to increase ungulate carrion consumption, as predicted by optimal foraging theory, which may substantially affect plant and wildlife communities as wolves continue to recover and coyote diets shift in response.more » « less
- 
            Abstract Global change is increasing the frequency and severity of human‐wildlife interactions by pushing people and wildlife into increasingly resource‐limited shared spaces. To understand the dynamics of human‐wildlife interactions and what may constitute human‐wildlife coexistence in the Anthropocene, there is a critical need to explore the spatial, temporal, sociocultural and ecological variables that contribute to human‐wildlife conflicts in urban areas.Due to their opportunistic foraging and behavioural flexibility, coyotes (Canis latrans) frequently interact with people in urban environments. San Francisco, California, USA hosts a very high density of coyotes, making it an excellent region for analysing urban human‐coyote interactions and attitudes toward coyotes over time and space.We used a community‐curated long‐term data source from San Francisco Animal Care and Control to summarise a decade of coyote sightings and human‐coyote interactions in San Francisco and to characterise spatiotemporal patterns of attitudes and interaction types in relation to housing density, socioeconomics, pollution and human vulnerability metrics, and green space availability.We found that human‐coyote conflict reports have been significantly increasing over the past 5 years and that there were more conflicts during the coyote pup‐rearing season (April–June), the dry season (June–September) and the COVID‐19 pandemic. Conflict reports were also more likely to involve dogs and occur inside of parks, despite more overall sightings occurring outside of parks. Generalised linear mixed models revealed that conflicts were more likely to occur in places with higher vegetation greenness and median income. Meanwhile reported coyote boldness, hazing and human attitudes toward coyotes were also correlated with pollution burden and human population vulnerability indices.Synthesis and applications: Our results provide compelling evidence suggesting that human‐coyote conflicts are intimately associated with social‐ecological heterogeneities and time, emphasizing that the road to coexistence will require socially informed strategies. Additional long‐term research articulating how the social‐ecological drivers of conflict (e.g. human food subsidies, interactions with domestic species, climate‐induced droughts, socioeconomic disparities, etc.) change over time will be essential in building adaptive management efforts that effectively mitigate future conflicts from occurring. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Neighborhood ethnicity is related to mammal occupancy and activity across a desert metropolitan areaAbstract Cities support abundant human and wildlife populations that are shaped indirectly and directly by human decisions, often resulting in unequal access to environmental services and accessible open spaces. Urban land cover drives biodiversity patterns across metropolitan areas, but at smaller scales that matter to local residents, neighborhood socio‐cultural factors can influence the presence and abundance of wildlife. Neighborhood income is associated with plant and animal diversity in some cities, but the influence of other social variables is less well understood, especially across desert ecosystems. We explored wildlife distribution across gradients of neighborhood ethnicity in addition to income and landscape characteristics within residential areas of metropolitan Phoenix, Arizona, USA. Utilizing data from 38 wildlife cameras deployed in public parks and undeveloped open spaces within or near suburban neighborhoods, we estimated occupancy and activity patterns of common mammal species, including species native to the Sonoran Desert (coyote [Canis latrans] and desert cottontail rabbit [Sylvilagus audubonii]), and non‐native domestic cat (Felis catus). Neighborhood ethnicity (percentage of Latino residents) appeared to exhibit a negative relationship with occupancy for coyotes and cottontail rabbits. Additionally, daily activity patterns of coyotes occurred later in the evenings and mornings in neighborhoods with higher proportions of Latino residents, but activity was unaffected by differences in neighborhood income. This study is one of the first to show that social‐ecological mechanisms associated with patterns of neighborhood ethnicity as well as income may help to shape wildlife distribution in cities. These findings have implications for equitable management and provisioning of ecosystem services for urban residents and highlight the importance of considering a range of social covariates to better understand biodiversity outcomes in urban and urbanizing areas.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
