skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Colossal Strain Tuning of Ferroelectric Transitions in KNbO 3 Thin Films
Abstract Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes itsTc> 975 K, its decomposition temperature in air, and for −1.4% strain, toTc> 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing.  more » « less
Award ID(s):
2039380 2210933
PAR ID:
10639631
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
52
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multifunctionality as a paradigm requires materials exhibiting multiple superior properties. Integrating second‐order optical nonlinearity and large bandgap with piezoelectricity can, for example, enable broadband, strain‐tunable photonics. Though very different phenomena at distinct frequencies, both second‐order optical nonlinearity and piezoelectricity are third‐rank polar tensors present only in acentric crystal structures. However, simultaneously enhancing both phenomena is highly challenging since it involves competing effects with tradeoffs. Recently, a large switchable ferroelectric polarization of ≈80 μC cm−2was reported in Zn1‐xMgxO films. Here, ferroelectric Zn1‐xMgxO is demonstrated to be a platform that hosts simultaneously a 30% increase in the electronic bandgap, a 50% enhancement in the second harmonic generation (SHG) coefficients, and a near 200% improvement in the piezoelectric coefficients over pure ZnO. These enhancements are shown to be due to a 400% increase in the electronic anharmonicity and a ≈200% decrease in the ionic anharmonicity with Mg substitution. Precisely controllable periodic ferroelectric domain gratings are demonstrated down to 800 nm domain width, enabling ultraviolet quasi‐phase‐matched optical harmonic generation as well as domain‐engineered piezoelectric devices. 
    more » « less
  2. Abstract Ferro-rotational magnet RbFe(SO4)2has attracted attention for its stable ferro-rotational phase and electric-field-controlled magnetic chirality. This work presents the multiferroic properties andH–Tphase diagram of RbFe(SO4)2, which have been underexplored. Our measurements of magnetic susceptibility, ferroelectric polarization, and dielectric constant under various magnetic fields reveal four distinct phases: (I) a ferroelectric and helical magnetic phase below 4 K and 6 T, (II) a paraelectric and collinear magnetic phase below 4 K and above 6 T, (III) a paraelectric and non-collinear magnetic phase below 4 K and above 9 T, and (IV) a paraelectric and paramagnetic above 4 K. This study clarifies the multiferroic behavior andH–Tphase diagram of RbFe(SO4)2, providing valuable insights into ferro-rotational magnets. 
    more » « less
  3. Abstract Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies. 
    more » « less
  4. Abstract The local compositional heterogeneity associated with the short‐range ordering of Mg and Nb in PbMg1/3Nb2/3O3(PMN) is correlated with its characteristic relaxor ferroelectric behavior. Fully ordered PMN is not prepared as a bulk material. This work examines the relaxor behavior in PMN thin films grown at temperatures below 1073 K by artificially reducing the degree of disorder via synthesis of heterostructures with alternate layers of Pb(Mg2/3Nb1/3)O3and PbNbO3, as suggested by the random‐site model. 100 nm thick, phase‐pure films are grown epitaxially on (111) SrTiO3substrates using alternate target timed pulsed‐laser deposition of Pb(Mg2/3Nb1/3)O3and PbNbO3targets with 20% excess Pb. Selected area electron diffraction confirms the emergence of (1/2, 1/2, 1/2) superlattice spots with randomly distributed ordered domains as large as ≈150 nm. These heterostructures exhibit a dielectric constant of 800, loss tangents of ≈0.03 and 2× remanent polarization of ≈11 µC cm−2at room temperature. Polarization–electric field hysteresis loops, Rayleigh data, and optical second‐harmonic generation measurements are consistent with the development of ferroelectric domains below 140 K. Temperature‐dependent permittivity measurements demonstrate reduced frequency dispersion compared to short range ordered PMN films. This work suggests a continuum between normal and relaxor ferroelectric behavior in the engineered PMN thin films. 
    more » « less
  5. Abstract Perovskite photovoltaic ABX3systems are being studied due to their high energy‐conversion efficiencies with current emphasis placed on pure inorganic systems. In this work, synchrotron single‐crystal diffraction measurements combined with second harmonic generation measurements reveal the absence of inversion symmetry below room temperature in CsPbBr3. Local structural analysis by pair distribution function and X‐ray absorption fine structure methods are performed to ascertain the local ordering, atomic pair correlations, and phase evolution in a broad range of temperatures. The currently accepted space group assignments for CsPbBr3are found to be incorrect in a manner that profoundly impacts physical properties. New assignments are obtained for the bulk structure: (above ≈410 K),P21/m(between ≈300 K and ≈410 K), and the polar groupPm(below ≈300 K), respectively. The newly observed structural distortions exist in the bulk structure consistent with the expectation of previous photoluminescence and Raman measurements. High‐pressure measurements reveal multiple low‐pressure phases, one of which exists as a metastable phase at ambient pressure. This work should help guide research in the perovskite photovoltaic community to better control the structure under operational conditions and further improve transport and optical properties. 
    more » « less