As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization. 
                        more » 
                        « less   
                    This content will become publicly available on September 1, 2026
                            
                            Robust Distance Correlation for Variable Screening
                        
                    
    
            ABSTRACT In modern statistical applications, identifying critical features in high‐dimensional data is essential for scientific discoveries. Traditional best subset selection methods face computational challenges, while regularization approaches such as Lasso, SCAD and their variants often exhibit poor performance with ultrahigh‐dimensional data. Sure screening methods, widely used for dimensionality reduction, have been developed as popular alternatives, but few target heavy‐tailed characteristics in modern big data. This paper introduces a new sure screening method, based on robust distance correlation (‘RDC’), designed for heavy‐tailed data. The proposed method inherits the benefits of the original model‐free distance correlation‐based screening while robustly estimating distance correlation in the presence of heavy‐tailed data. We further develop an FDR control procedure by incorporating the Reflection via Data Splitting (REDS) method. Extensive simulations demonstrate the method's advantage over existing screening procedures under different scenarios of heavy‐tailedness. Its application to high‐dimensional heavy‐tailed RNA‐seq data from The Cancer Genome Atlas (TCGA) pancreatic cancer cohort showcases superior performance in identifying biologically meaningful genes predictive of MAPK1 protein expression critical to pancreatic cancer. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2113568
- PAR ID:
- 10639891
- Publisher / Repository:
- John Wiley & Sons Ltd
- Date Published:
- Journal Name:
- Stat
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2049-1573
- Page Range / eLocation ID:
- e70094
- Subject(s) / Keyword(s):
- distance correlation false discovery rate Huber loss robustness sure screening property variable selection
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We propose a screening method for high-dimensional data with ordinal competing risk outcomes, which is time-dependent and model-free. Existing methods are designed for cause-specific variable screening and fail to evaluate how a biomarker is associated with multiple competing events simultaneously. The proposed method utilizes the Volume under the ROC surface (VUS), which measures the concordance between values of a biomarker and event status at certain time points and provides an overall evaluation of the discrimination capacity of a biomarker. We show that the VUS possesses the sure screening property, i.e., true important covariates can be retained with probability tending to one, and the size of the selected set can be bounded with high probability. The VUS appears to be a viable model-free screening metric as compared to some existing methods in simulation studies, and it is especially robust to data contamination. Through an analysis of breast-cancer geneexpression data, we illustrate the unique insights into the overall discriminatory capability provided by the VUS.more » « less
- 
            Abstract MotivationThe advancement of high-throughput technology characterizes a wide variety of epigenetic modifications and noncoding RNAs across the genome involved in disease pathogenesis via regulating gene expression. The high dimensionality of both epigenetic/noncoding RNA and gene expression data make it challenging to identify the important regulators of genes. Conducting univariate test for each possible regulator–gene pair is subject to serious multiple comparison burden, and direct application of regularization methods to select regulator–gene pairs is computationally infeasible. Applying fast screening to reduce dimension first before regularization is more efficient and stable than applying regularization methods alone. ResultsWe propose a novel screening method based on robust partial correlation to detect epigenetic and noncoding RNA regulators of gene expression over the whole genome, a problem that includes both high-dimensional predictors and high-dimensional responses. Compared to existing screening methods, our method is conceptually innovative that it reduces the dimension of both predictor and response, and screens at both node (regulators or genes) and edge (regulator–gene pairs) levels. We develop data-driven procedures to determine the conditional sets and the optimal screening threshold, and implement a fast iterative algorithm. Simulations and applications to long noncoding RNA and microRNA regulation in Kidney cancer and DNA methylation regulation in Glioblastoma Multiforme illustrate the validity and advantage of our method. Availability and implementationThe R package, related source codes and real datasets used in this article are provided at https://github.com/kehongjie/rPCor. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
- 
            Abstract A critical task in microbiome data analysis is to explore the association between a scalar response of interest and a large number of microbial taxa that are summarized as compositional data at different taxonomic levels. Motivated by fine‐mapping of the microbiome, we propose a two‐step compositional knockoff filter to provide the effective finite‐sample false discovery rate (FDR) control in high‐dimensional linear log‐contrast regression analysis of microbiome compositional data. In the first step, we propose a new compositional screening procedure to remove insignificant microbial taxa while retaining the essential sum‐to‐zero constraint. In the second step, we extend the knockoff filter to identify the significant microbial taxa in the sparse regression model for compositional data. Thereby, a subset of the microbes is selected from the high‐dimensional microbial taxa as related to the response under a prespecified FDR threshold. We study the theoretical properties of the proposed two‐step procedure, including both sure screening and effective false discovery control. We demonstrate these properties in numerical simulation studies to compare our methods to some existing ones and show power gain of the new method while controlling the nominal FDR. The potential usefulness of the proposed method is also illustrated with application to an inflammatory bowel disease data set to identify microbial taxa that influence host gene expressions.more » « less
- 
            Summary Cancer is a heterogeneous disease. Finite mixture of regression (FMR)—as an important heterogeneity analysis technique when an outcome variable is present—has been extensively employed in cancer research, revealing important differences in the associations between a cancer outcome/phenotype and covariates. Cancer FMR analysis has been based on clinical, demographic, and omics variables. A relatively recent and alternative source of data comes from histopathological images. Histopathological images have been long used for cancer diagnosis and staging. Recently, it has been shown that high-dimensional histopathological image features, which are extracted using automated digital image processing pipelines, are effective for modeling cancer outcomes/phenotypes. Histopathological imaging–environment interaction analysis has been further developed to expand the scope of cancer modeling and histopathological imaging-based analysis. Motivated by the significance of cancer FMR analysis and a still strong demand for more effective methods, in this article, we take the natural next step and conduct cancer FMR analysis based on models that incorporate low-dimensional clinical/demographic/environmental variables, high-dimensional imaging features, as well as their interactions. Complementary to many of the existing studies, we develop a Bayesian approach for accommodating high dimensionality, screening out noises, identifying signals, and respecting the “main effects, interactions” variable selection hierarchy. An effective computational algorithm is developed, and simulation shows advantageous performance of the proposed approach. The analysis of The Cancer Genome Atlas data on lung squamous cell cancer leads to interesting findings different from the alternative approaches.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
